
9.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition
1

Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm
 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly
 How to track ages of pages?

 Just use a FIFO queue

15 page faults

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)
 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find
smallest value
 Search through table needed

 Stack implementation
 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms
 LRU needs special hardware and still slow
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace any with reference bit = 0 (if one exists)

We do not know the order, however
 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit
 Clock replacement
 If page to be replaced has

 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

 Improve algorithm by using reference bit and modify bit (if
available) in concert

 Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to replace
2. (0, 1) not recently used but modified – not quite as good, must

write out before replacement
3. (1, 0) recently used but clean – probably will be used again soon
4. (1, 1) recently used and modified – probably will be used again

soon and need to write out before replacement
 When page replacement called for, use the clock scheme but

use the four classes replace page in lowest non-empty class
 Might need to search circular queue several times

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made
to each page
 Not common

 Lease Frequently Used (LFU) Algorithm: replaces page with
smallest count

 Most Frequently Used (MFU) Algorithm: based on the argument
that the page with the smallest count was probably just brought in
and has yet to be used

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add

to free pool
 When convenient, evict victim

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents

again from disk
 Generally useful to reduce penalty if wrong victim frame

selected

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page
access

 Some applications have better knowledge – i.e. databases
 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer
 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out
of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation of Frames

 Each process needs minimum number of frames
 Defined by the computer architecture

 Maximum of course is total frames in the system
 Two major allocation schemes

 fixed allocation
 priority allocation

 Many variations

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames
 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process
 Dynamic as degree of multiprogramming, process sizes

change

m
S
spa

m
sS

ps

i
ii

i

ii








 for allocation

frames of number total

 process of size
m  64
s110
s2 127

a1 
10
137

 62  4

a2 
127
137

 62  57

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather
than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with lower

priority number

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another
 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from only its own
set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is
very high
 Page fault to get page
 Replace existing frame
 But quickly need replaced frame back
 This leads to:

 Low CPU utilization
 Operating system thinking that it needs to increase the

degree of multiprogramming
 Another process added to the system

 Thrashing  a process is busy swapping pages in and out

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing (Cont.)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 A locality is a set of pages actively used together
 Process migrates from one locality to another
 Localities may overlap
 Localities are defined by the program structure and its data

structure

 Why does thrashing occur?
 size of locality > total memory size
 Limit effects by using local or priority page replacement

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working-Set Model
   working-set window  a fixed number of page references

Example: 10,000 instructions
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent  (varies in time)
 if  too small will not encompass entire locality
 if  too large will encompass several localities
 if  =   will encompass entire program

 D =  WSSi  total demand frames
 Approximation of locality

 if D > m  Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Keeping Track of the Working Set

 Approximate the working-set model with interval timer + a reference bit
 Example:  = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency (PFF) rate

and use local replacement policy
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its

page-fault rate
 Working set changes over time
 Peaks and valleys over time

