CSE 4300 Assignment 3
Assigned: 11/3/2019
Due: 11/19/2019, 11:59 p.m.
Total points: 120

In this project, you will learn — (1) How to change 0S/161 kernel and compile, (2) How to add system calls
to operating system kernel, and (3) How to make the system level functions available to the user program.

This Project requires you to implement new system calls in 0S/161. You will also develop user programs
(one for each new system call or just one program that tests all new system calls) to test the new system
calls. You can use the “ASST0” code base to test your programs.

(10 points) Part A

This part is to get yourself familiarized with the 0S/161 source code. Your job is to identify and revise the
proper module(s) to customize your 0OS/161 greeting message that is displayed on the menu screen. Print
your name during the boot process.

Hints:

1. Look inside 0s161-1.11/kern/main directory

2. You will need to compile kernel and execute ASSTO. You should already know how to compile kernel
(assuming you have already installed 0S/161).



(30 point) Part B
Implement a simplified system call void _exit(int exitCode)

In 0S161, you can end user programs by calling the “_exit( )” system call. Without an implementation of
_exit( ), the threads created to handle user programs will hang around forever, executing an infinite
loop in the user space and taking up a lot of CPU time.

(HINT: You should find an existing function that is almost an ideal handler for the _exit( ) system call -
then modify that function to receive the exitCode as a parameter (you will also have to modify all the
other uses of that function in order to pass the exitCode).

In this part, you have to print out the exitCode that is passed.

Once you implement the _exit() system call, you will find that useful for the next part to prevent infinite
loop.

(30 point) Part C

You need to implement a system call “int printint(int c)“
This system call should accept an integer and print it using the internal kprintf( ) function. The return value
should be 0 if the integer is a multiple of 2 or 1 otherwise.

(30 point) Part D

You need to implement a system call int reversestring(const char *str, int len)

This system call should accept a string and length of the string as input and print the reverse of the string
using the internal kprintf( ) function. The return value should be 0 if the length of the string is multiple of
2 or 1 otherwise.



Test Functions for the System Calls
Write user level programs to test Part B, C, and D respectively. You can write one program to test all three
or write individual program as well.

(10 point) Part E. Create a test program, named testprint, to test the printint( ) system call developed in
Part C. Pass 5 integers (-1, 0, 1, 2, 3) to printint in a for loop and print the return values use printint as
well.

(10 point) Part F. Create another test program, named testreverse to use the reversestring( ) system call
developed in Part D. Pass string “HelloWorld” as argument and print the return value.

Please note that you will need to use the _exit system call in the above programs to avoid infinite loop.

Note that the system calls given here are user-level functions, i.e. these are the functions that user
programs will call to invoke the system calls. You will need to use different names for the handlers of
these functions in the kernel (e.g., sys_reboot( ) is called to handle the reboot( ) system call.)

As a reference, the Appendix contains a list of 0S/161 system calls, along with some literature to help
make understanding these systems calls a little easier. You are highly encouraged to study and discuss the
Appendix among yourselves while working on this assignment.

Source code: (1/2)

1. Include any source files you modified or created. If possible, provide a Patch file that include all
modifications for each part (+10).

Report: (1/2)

1. Add a cover page describing what parts are completed.

2. Include the list of the files you changed or added for each part (including test programs). Explain the
reasons/purpose behind your changes briefly.

3. Include the sample output of your test programs (if applicable).

You may include above items in a word file (report) and a zip file (source files or patch files) and upload
them to HuskyCT.



Important Points:

e The system calls given here are user-level function names (e.g., printchar), that the user programs
will call to invoke these system calls. You will need to use different names for the handlers of these
functions in the kernel (e.g., sys_printchar()), which will be called to handle the printchar( ) system
call.

e You should look at the following files:

0 unistd.h
0 syscall.h
0 syscall.c
0 callno.h
0 conf.kern

0 Caution 1: One or more files in this list (e.g., unistd.h) may have multiple copies in separate
directories. You need to change the right file.

0 Caution 2: Read the comments in syscall.c to figure out how to pass multiple parameters.

e Youmay add a new file (e.g., simple_syscalls.c) that will implement your newly added system calls.

o After you finish adding each system call, you will need to compile the new kernel and user
programs to see the effect of your change. Please refer to the first assignment to see how to
compile a kernel.

Writing, compiling and running Test Programs

e Yourtest programs need to be saved under 0s161-1.11/testbin directory. Create a directory called
/testA and save your test program in the directory. Other directories under testbin include other
test programs.

e You will need to modify the makefile that you can copy from another directory within testbin(e.g.,
/palin).

e You will also need to edit the makefile under testbin directory. Hint: look at the content of the
makefile and see how other test programs are included. You will need to add one line per test
program.

e To compile your user program, just type “make” from /0s161-1.11

e You can run your user program as follows:

O First, execute the following from command prompt:
= >sys161 kernel-ASSTO
0 Next, execute the following from your new kernel command prompt
» p testbin/testA (assuming testA.c is your test program name for Part A and it
is saved under testbin/testA directory)
You will need to modify the code in syscall.c to detect your new system calls and dispatch appropriate



system call handlers. Although these system calls are simple enough to implement fully within syscall.c, it
is suggested that you place the handlers in a separate function in a file in the /userprog subdirectory. You
should name this file simple_syscalls.c. You will also need to add an entry for this new file in conf.kern
file, and reconfigure your kernel so that it is included in the build. Because you will call functions from
syscall.c, which are defined elsewhere, you should add prototypes for these functions to the syscall.h
header file, similar to what is done for the sys_reboot( ) function.



Understanding System Calls

In this document, we walk through the functions and steps that are involved in (1) starting a user-level
program, (2) handling system calls in the OS, and (3) invoking system calls at the user-level. You should
read this document together with the 0S/161 source code files that it refers to.

User-Level Programs

The System/161 simulator can run normal programs compiled from C. These programs are compiled with
the cross-compiler cs161-gcc. This compiler runs on the host machine and produces MIPS executables. It
is the same compiler used to compile your 0OS/161 kernel. To create new user programs, you will need to
edit the Makefile in bin, sbin, or testbin (depending on where you put your programs), and then create a
directory similar to those that already exist. Use an existing program and its Makefile as a template. You
should create new user-level test programs that use the system calls you are adding.

Getting to User-Mode (i.e. Starting a User-Level Program)

Examine menu.c to see how the “p” menu command is handled. This command allows us to load and
execute a single user-level program. We will describe this in great detail, most of which is not of critical
importance for this Project. But you will need to understand this eventually, however, and the sooner the
better.

The menu( ) function loops forever, printing the menu prompt, getting a string from the console, and
calling menu_execute( ) to handle the input. Looking at menu_execute( ), we see that it separates the
input into individual commands (indicated by a semi-colon) and then calls cmd_dispatch( ) for each
command. In cmd_dispatch( ), the name of the command is separated from its arguments, and the name
is looked up in the cmdtable data structure. This table stores the string name of each menu command and
a function pointer to the function that should handle that command.

Looking at the cmdtable declaration, we find that the “p” command is handled by calling the cmd_prog( )
function. This function simply strips off the “p” part and passes the rest of the input to the common_prog(
) function. Looking at common_prog( ) we see that it calls thread_fork( ), creating a new thread to run the
specified user-level program. Following this call to thread_fork( ), our system has 2 threads: the initial
boot thread that runs the menu( ) loop, and the new thread that runs the requested user-level program.

You can look thread.c to see what thread_fork( ) does, but the important thing right now is that the fourth
argument to thread_fork( ) specifies the function that the new thread should start executing (in this case,
cmd_progthread( )), and the second and third arguments to thread_fork( ) are the arguments to pass to
that function (in this case, the name of the program to load). The cmd_progthread( ) function calls
runprogram( ), passing it the name of the program to load and execute. Note that if runprogram( ) is
successful, the thread will continue with the execution of the user-level program and will never return to
cmd_progthread( ).



Now let's consider how runprogram( ) operates. The source files that are responsible for the loading and
running of user-level programs include loadelf.c, uio.c, and runprogram.c.

runprogram.c: This file contains only one function, runprogram( ), which is responsible for running a
program from the kernel menu. It uses the virtual file system operations to open the file containing the
program we want to load, creates an address space for the thread, and loads the program into that
address space, using the load_elf( ) function. If loading the program is successful, runprogram( ) then sets
up the user stack area in the address space, and switches to user mode and start running the user
program.

loadelf.c: This file contains the functions responsible for loading an ELF executable from the file system
into the virtual memory space. (ELF is the name of the executable format produced by cs161-gcc.) Of
course, at this point this virtual memory space does not provide what is normally meant by virtual memory
— although there is translation between the addresses that the executables “believe” they are using and
physical addresses, there is no mechanism for providing more memory than exists physically.

uio.c: This file contains functions for moving data between kernel and user spaces. Knowing when and
how to cross this boundary is critical to properly implementing user level programs, so this is a good file
to carefully study.

Once a user program starts running, it requests service from the OS by way of system calls. We now take
a look at these.

Getting to System Mode: Traps and Syscalls

Exceptions are the key to operating systems; they are the mechanism that enables the OS to regain control
of execution and therefore do its job. You can think of exceptions as the interface between the processor
and the operating system. When OS boots, it installs an “exception handler” (essentially carefully crafted
assembly code) at a specific address in memory. When the processor raises an exception, it invokes this,
which sets up a “trap frame” and calls into the OS. Initializing the trap frame and returning from an
exception is all done in assembly code, and is found in exception.S.

You need not be able to read MIPS assembly code, but the comments in this .S file are reasonably good.
You can see how all the registers are saved ("sw” == “store word”), followed by a “jal” call to the mips_trap
function (”jal” == “jump and link”). On return from mips_trap, all of the saved state is restored ("lw” ==
“load word”) and execution resumes at the point where the exception occurred.

Looking at struct trapframe in trapframe.h, we can see that a trap frame includes space to save all the
processor registers that the user program might have been using, as well as some additional state that
identifies the cause of the exception (the ”"tf_cause” field), and the



instruction that was being executed when the exception occurred (the "tf_epc” field, where epc ==
"Exception PC” == contents of the program counter register when the exception occurred). Note that
since "exception” is such an overloaded term in computer science, OS lingo for an exception is a "trap” —
when the OS traps execution. Interrupts are exceptions, and more significantly for this Project, so are
system calls. Specifically, syscall.c handles traps that happen to be system calls.

mips_trap( ) in trap.c is the key function for returning control to the operating system. This is the C
function that gets called by the assembly language exception handler. It includes code to determine what
type of exception occurred, and to dispatch an appropriate handler. If the exception code is EX_SYS, then
mips_syscall( ) is called to handle the system call, passing it the trap frame. mips_syscall( ) in syscall.c is
the function that delegates the actual work of a system call to the kernel function that implements it.
Read the comments at the top of this file (second block of comments) carefully! In mips_syscall( ), we
begin by extracting the system call number from the trapframe's tf_vO0 field. This means that the system
call number was stored in register vO prior to executing the syscall( ) instruction. Then we simply switch
on the system call number, with a separate “case” to handle each possible system call. Notice that reboot()
is the only case currently handled. You will need to add your staffs here to handle your newly added
system calls.

Following the switch statement, we prepare to return from the system call. The user-level side of the
system call expects to find the result of the system call in register v0O, with register a3 indicating whether
or not an error occurred. We accomplish this by setting the appropriate fields in the trap frame, which
will be loaded into the machine registers before returning control to the user program. Finally, we have
to advance the program counter to the next instruction, so that the mips_syscall( ) instruction will not be
repeated. This is done by incrementing the tf_epc field of the trap frame.

User Side of a System Call

That is what happens on the OS side when a system call occurs. Now let’s look at the user-level interface
to system calls. Most of this is encapsulated in C library functions. /lib/libc/: This is where the user-level C
library is. There's obviously a lot of code here. We don't expect you to read it all, although it may be
instructive in the long run to do so. Job interviewers have an uncanny habit of asking people to implement
standard C library functions on the whiteboard. For present purposes you need only look at the code that
implements the user-level side of system calls, which we detail below.

errno.c: This is where the global variable “errno” is defined. Note that this variable is a global within a
user-level C program. Therefore, you cannot set errno for a user-level program by setting a variable
named “errno” in the kernel.

syscalls-mips.S: This file contains the machine-dependent code necessary for implementing the user-level
side of MIPS system calls. It consists of a C pre-processor (i.e. #define) that declares the body of each
system call. The body of each system call is identical, except that a different system call number “num” is
used. This body simply loads the system call number (as defined in syscall.h) into register vO and then
jumps to the code common to all system calls. (Compare this with what’s on the OS side, where the system
call number is extracted from the tf_vO field of the trap frame).



You may notice that it looks like the code jumps to the __syscall label before setting the system call
number. This is just a peculiarity of the MIPS architecture —the instruction immediately following a branch
is called a "delay slot”. This means that an instruction can be scheduled and executed during a branch.
Such instructions appear immediately after the branch instruction itself. Therefore, the “addiu v0, SO,
SYS_##sym” instruction happens before we get to the common syscall code at the label __syscall.

Now, let’s take a look at the assembly code at the __syscall label. The common system call code begins
with the syscall instruction, which causes a ”system call exception”, and transfers control to the OS as
outlined above. The tf_epc field in the trap frame (on the OS side) points to this instruction, and we finish
our system call handler by setting tf_epc to the next instruction. Thus, on return from the system call, we
execute the beq instruction. This instruction tests if the system call failed or succeeded (recall that the OS
side sets tf_a3 to 1 on error, and 0 on success). If an error occurred, we take the error code from the vO
register and store it into the global variable errno, and set the return value of the system call (the vO
register) to -1. If no error occurred, then the OS puts the result of the system call into tf_v0, and we can
just return.

syscalls.S: This file is created from syscalls-mips.S at compile time, and is the actual file assembled into the
C library. Adding new entries to syscall.h automatically causes new user-level system call procedures to
be defined when you rebuild the user-level code. Every “SYSCALL(sym, num)” macro statement in
syscalls.S is expanded by the C preprocessor into a declaration of the appropriate system call function.

../0s161-1.11/include/unistd.h: This file contains the user-level interface definition of the system calls for
0S/161 (including the ones you will implement). The only thing you need to do to complete the user-level
system call interface is to declare prototypes for your new system calls in unistd.h. Everything else on the
user side happens automatically when you rebuild the kernel after updating syscall.h. Note that the user-
level interface defined in unistd.h differs from that of the kernel functions you will define to implement
the calls. You will need to declare these kernel functions in syscall.h (note the name will be different from
your user side definition).



APPENDIX

A List (Not Exhaustive) of 0S/161 Systems Calls
errno - error code reporting

_exit - terminate process

chdir - change current directory

close - close file

dup2 - clone file handles

execv - execute a program

fork - copy the current process

fstat - get file state information

fsync - flush file system data for a specific file to disk
ftruncate - set size of afile

__getcwd - get name of current working directory (backend)
getdirentry - read filename from directory
getpid - get process id

ioctl - miscellaneous device I/O operations
link - create hard link to a file

Iseek - change current position in file

Istat - get file state information

mkdir - create directory

open - open a file

pipe - create pipe object

read - read data from file

readlink - fetch symbolic link contents
reboot - reboot or halt system

remove - delete (unlink) a file

rename - rename or move a file

rmdir - remove directory

sbrk - set process break (allocate memory)
stat - get file state information

symlink - create symbolic link

sync - flush file system data to disk

__time - get time of day

waitpid - wait for a process to exit

write - write data to file



