CSE 4300 Homework 2 (Due on October 30, 2019)

Question 1 (12 points): Many CPU-scheduling algorithms are parameterized. For
example, the RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to define the number of queues, the scheduling
algorithm for each queue, the criteria used to move processes between queues, and so
on.

These algorithms are thus really sets of algorithms (for example, the set of RR
algorithms for all time slices, and so on). One set of algorithms may include another (for
example, the FCFS algorithm is the RR algorithm with an infinite time quantum). What (if
any) relation holds between the following pairs of algorithm sets?

a. Priority and SJF

b. Multilevel feedback queues and FCFS
c. Priority and FCFS

d. RR and SJF

Question 2 (25 points): Calculate the completion time and wait time of the jobs in the
following table for FCFS, RR (quantum = 2) and SRTF (shortest remaining time first). The
scheduler can break ties arbitrarily.

Job Length Arrival Completion time Wait time
time FCFS RR SRTF FCFS RR SRTF
1 50 0
2 40 5
3 30 10
4 20 15

Question 3.1 (5 points): In real-time scheduling theory, what is the difference among
periodic task, sporadic task and aperiodic task?

Question 3.2 (15 points): Given a synchronous task set of three periodic tasks: T1 = (1,
6,6),T2=(2,8,5)and T3 =(3, 12, 12), please construct the schedules for the task set
from time O to time 24 under:

(1) Rate-Monotonic Scheduling (RM)
(2) Deadline-Monotonic Scheduling (DM)

(3) Earliest-Deadline-First Scheduling (EDF)

Question 3.3 (5 points): Calculate the average response time of the above three
constructed schedules.

Question 4 (8 points): Please explain what is the priority inversion problem. Can priority
inversion problem happen if you use round-robin scheduling instead of priority
scheduling?

Question 5 (10 points): Using the following example, what is the exact output from
both the parent process and the child process?

#include <unistd.h>
#include <stdio.h>
int main(){
int i=0;
i+=1;
if(fork()){
i+=2;
printf("A %d\n",i);
lelse{
i-=2;
printf("B %d\n",i);
}

return 0;

Question 6 (20 points): The first known correct software solution to the critical-section
problem for n processes with a lower bound on waiting of n — 1 turns was presented by
Eisenberg and McGuire. The processes share the following variables:

enum pstate {idle, want_in, in_cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle. The initial value of turn is immaterial (between
0 and n-1). The structure of process Pi is shown as follows. Prove that the algorithm
satisfies all three requirements for the critical-section problem.

do{
while (true) {
flag[i] = want_in;
j=turn;

while (j =) {
if (flag[j] !=idle)
j=turn;
else
i=(+1)%n;
}

flag[i] = in_cs;

j=0;

while ((j<n) && (j==i || flag[j] '=in_cs))
i+

if ((j >=n) && (turn ==i || flag[turn] == idle))
break;

}
/* critical section */
j=(turn+1)%n;

while (flag[j] == idle)
j=(+1)%n;

turn =j;
flagl[i] = idle;

/* remainder section */
} while (true);

