
9.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition
1

Page Replacement Algorithms

MIN, OPT (optimal)
RANDOM

evict random page
FIFO (first-in, first-out)

give every page equal residency
LRU (least-recently used)
MRU (most-recently used)

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm
Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
3 frames (3 pages can be in memory at a time per process)

Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
Adding more frames can cause more page faults!
 Belady’s Anomaly

How to track ages of pages?
Just use a FIFO queue

15 page faults

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

Replace page that will not be used for longest period of time
9 is optimal for the example

How do you know this?
Can’t read the future

Used for measuring how well your algorithm performs

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

Use past knowledge rather than future
Replace page that has not been used in the most amount of time
Associate time of last use with each page

12 faults – better than FIFO but worse than OPT
Generally good algorithm and frequently used
But how to implement?

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)
Counter implementation

Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to find
smallest value
 Search through table needed

Stack implementation
Keep a stack of page numbers in a double link form:
Page referenced:
 move it to the top
 requires 6 pointers to be changed

But each update more expensive
No search for replacement

LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms
LRU needs special hardware and still slow
Reference bit

With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace any with reference bit = 0 (if one exists)
We do not know the order, however

Second-chance algorithm
Generally FIFO, plus hardware-provided reference bit
Clock replacement
If page to be replaced has
 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if
available) in concert
Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace
2. (0, 1) not recently used but modified – not quite as good, must

write out before replacement
3. (1, 0) recently used but clean – probably will be used again soon
4. (1, 1) recently used and modified – probably will be used again

soon and need to write out before replacement
When page replacement called for, use the clock scheme but
use the four classes replace page in lowest non-empty class

Might need to search circular queue several times

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

Keep a counter of the number of references that have been made
to each page

Not common

Lease Frequently Used (LFU) Algorithm: replaces page with
smallest count

Most Frequently Used (MFU) Algorithm: based on the argument
that the page with the smallest count was probably just brought in
and has yet to be used

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms
Keep a pool of free frames, always

Then frame available when needed, not found at fault time
Read page into free frame and select victim to evict and add
to free pool
When convenient, evict victim

Possibly, keep free frame contents intact and note what is in them
If referenced again before reused, no need to load contents
again from disk
Generally useful to reduce penalty if wrong victim frame
selected

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Applications and Page Replacement

All of these algorithms have OS guessing about future page
access
Some applications have better knowledge – i.e. databases
Memory intensive applications can cause double buffering

OS keeps copy of page in memory as I/O buffer
Application keeps page in memory for its own work

Operating system can given direct access to the disk, getting out
of the way of the applications

Raw disk mode
Bypasses buffering, locking, etc

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation of Frames

Each process needs minimum number of frames
Defined by the computer architecture

Maximum of course is total frames in the system
Two major allocation schemes

fixed allocation
priority allocation

Many variations

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Allocation
Equal allocation – For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames

Keep some as free frame buffer pool

Proportional allocation – Allocate according to the size of process
Dynamic as degree of multiprogramming, process sizes
change

m
S
spa

m
sS

ps

i
ii

i

ii








 for allocation

frames of number total

 process of size
m  64
s110
s2 127

a1 
10
137

 62  4

a2 
127
137

 62  57

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Allocation

Use a proportional allocation scheme using priorities rather
than size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower
priority number

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Global vs. Local Allocation

Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another

But then process execution time can vary greatly
But greater throughput so more common

Local replacement – each process selects from only its own
set of allocated frames

More consistent per-process performance
But possibly underutilized memory

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

If a process does not have “enough” pages, the page-fault rate is
very high

Page fault to get page
Replace existing frame
But quickly need replaced frame back
This leads to:
 Low CPU utilization
 Operating system thinking that it needs to increase the

degree of multiprogramming
 Another process added to the system

Thrashing  a process is busy swapping pages in and out

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing (Cont.)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging and Thrashing
Why does demand paging work?
Locality model

A locality is a set of pages actively used together
Process migrates from one locality to another
Localities may overlap
Localities are defined by the program structure and its data
structure

Why does thrashing occur?
 size of locality > total memory size

Limit effects by using local or priority page replacement

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working-Set Model
  working-set window  a fixed number of page references
Example: 10,000 instructions
WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

if  too small will not encompass entire locality
if  too large will encompass several localities
if  =   will encompass entire program

D =  WSSi  total demand frames
Approximation of locality

if D > m  Thrashing

Policy if D > m, then suspend or swap out one of the processes

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Keeping Track of the Working Set

Approximate the working-set model with interval timer + a reference bit
Example:  = 10,000

Timer interrupts after every 5000 time units
Keep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all
reference bits to 0
If one of the bits in memory = 1  page in working set

Why is this not completely accurate?
Improvement = 10 bits and interrupt every 1000 time units

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Fault Frequency
More direct approach than WSS
Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

If actual rate too low, process loses frame
If actual rate too high, process gains frame

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
n Direct relationship between working set of a process and its

page-fault rate
n Working set changes over time
n Peaks and valleys over time

