=

gy

o “»”’ Page Replacement Algorithms

0 MIN, OPT (optimal)
0 RANDOM
0 evict random page
0 FIFO (first-in, first-out)
0 give every page equal residency
0 LRU (least-recently used)
0 MRU (most-recently used)

Operating System Concepts — 9t Edition 9.1 Silberschatz, Galvin and Gagne ©2013

«$%’ First-In-First-Out (FIFO) Algorithm

0 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
0 3 frames (3 pages can be in memory at a time per process)

reference string
7 012 0 3 04 2 3 0321 201701

7| |7 7] 2] 2| 4] 4] 4] [o 0| o
| 19} o] |0 3| [3] 2] [2] [2] 1| 1 1] o] o
LI O] 0] [o] lof [3] [3 3 2 2] 2] [1]

page frames
15 page faults
0 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
0 Adding more frames can cause more page faults!
» Belady’ s Anomaly
0 How to track ages of pages?
0 Just use a FIFO queue

Operating System Concepts — 9t Edition 9.2 Silberschatz, Galvin and Gagne ©2013

FIFO lllustrating Belady' s Anomaly

16
o 14
S
8 12 o
o \
< 10 \/\
Q.
c 8
o
g 6 \\
> C
c 4

2

1 2 3 4 5 6 7
number of frames

A

Operating System Concepts — 9t Edition 9.3 Silberschatz, Galvin and Gagne ©2013

G5 Optimal Algorithm

0 Replace page that will not be used for longest period of time
0 9 is optimal for the example

0 How do you know this?
0 Can’tread the future

0 Used for measuring how well your algorithm performs

reference string
i 2 0 3 0 4 2 3 0 3 2 1 7 0 1
page frames

Operating System Concepts — 9t Edition 9.4 Silberschatz, Galvin and Gagne ©2013

Pz N
|

4% Least Recently Used (LRU) Algorithm

0 Use past knowledge rather than future
0 Replace page that has not been used in the most amount of time
0 Associate time of last use with each page

reference string
/7 01 2 0 3 0 4 2 3 0 2 0 1 7 0 1

0 12 faults — better than FIFO but worse than OPT
0 Generally good algorithm and frequently used

page frames

0 But how to implement?

«® LRU Algorithm (Cont.)

0 Counter implementation

0 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

0 When a page needs to be changed, look at the counters to find
smallest value

» Search through table needed

0 Stack implementation
0 Keep a stack of page numbers in a double link form:
0 Page referenced:
» move it to the top
» requires 6 pointers to be changed
0 But each update more expensive
0 No search for replacement

0 LRU and OPT are cases of stack algorithms that don’ t have
Belady’ s Anomaly

SR\

£ /}:; S
[’%-;’

gL

Operating System Concepts — 9th Edition 9.6 Silberschatz, Galvin and Gagne ©2013

&«fgry—/ Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

Operating System Concepts — 9t Edition 9.7 Silberschatz, Galvin and Gagne ©2013

e
=y

H’:‘ LRU Approximation Algorithms

0 LRU needs special hardware and still slow
0 Reference bit
0 With each page associate a bit, initially = 0
0 When page is referenced bit set to 1
0 Replace any with reference bit = O (if one exists)
» We do not know the order, however
0 Second-chance algorithm
0 Generally FIFO, plus hardware-provided reference bit
0 Clock replacement
0 If page to be replaced has
» Reference bit = 0 -> replace it
» reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules

Operating System Concepts — 9th Edition 9.8 Silberschatz, Galvin and Gagne ©2013

M} /7 Second-Chance (clock) Page-Replacement Algorithm

reference pages
bits

[o]
v
[o]
| v
.
v
[o]
v

N

circular queue of pages

(@)

Operating System Concepts — 9t Edition

9.9

reference pages

o)
v
o)
v
o
v
o)
v
=b(]
v

N

circular queue of pages

(b)

)
A

! b
U ﬁ'-:

Silberschatz, Galvin and Gagne ©2013

o]

im,
1-1:‘

&-«{":ﬁ Enhanced Second-Chance Algorithm

0 Improve algorithm by using reference bit and modify bit (if
available) in concert

0 Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified — best page to replace

2. (0, 1) not recently used but modified — not quite as good, must
write out before replacement

3. (1, 0) recently used but clean — probably will be used again soon

4. (1, 1) recently used and modified — probably will be used again
soon and need to write out before replacement

0 When page replacement called for, use the clock scheme but
use the four classes replace page in lowest non-empty class

0 Might need to search circular queue several times

.\'\ l.
- -J _'. \I\.
ﬁ:}‘ .‘\\]'
P o
7 S

A8

Operating System Concepts — 9th Edition 9.10 Silberschatz, Galvin and Gagne ©2013

=

JO (i - :
g Counting Algorithms

0 Keep a counter of the number of references that have been made
to each page

0 Not common

0 Lease Frequently Used (LFU) Algorithm: replaces page with
smallest count

0 Most Frequently Used (MFU) Algorithm: based on the argument
that the page with the smallest count was probably just brought in
and has yet to be used

R

AN
Al

- &)
SRS
> ~—

L ABX

Operating System Concepts — 9t Edition 9.11 Silberschatz, Galvin and Gagne ©2013

=

<« R

(cm

r o Page-Buffering Algorithms

0 Keep a pool of free frames, always
0 Then frame available when needed, not found at fault time

0 Read page into free frame and select victim to evict and add
to free pool

0 When convenient, evict victim
0 Possibly, keep free frame contents intact and note what is in them

0 If referenced again before reused, no need to load contents
again from disk

0 Generally useful to reduce penalty if wrong victim frame
selected

=T
/"»:;\\1
gl “_f..'_’

Operating System Concepts — 9t Edition 9.12 Silberschatz, Galvin and Gagne ©2013

=

.,,"C-"“ﬁ Applications and Page Replacement

0 All of these algorithms have OS guessing about future page
access

0 Some applications have better knowledge — i.e. databases
0 Memory intensive applications can cause double buffering
0 OS keeps copy of page in memory as /O buffer
0 Application keeps page in memory for its own work

0 Operating system can given direct access to the disk, getting out
of the way of the applications

0 Raw disk mode
0 Bypasses buffering, locking, etc

\'J_. .;\ ..'.‘.__‘
3 '/‘3:;_.‘\\1
gl gl 2

Operating System Concepts — 9th Edition 9.13 Silberschatz, Galvin and Gagne ©2013

3

A
#”

g _
S Allocation of Frames

0 Each process needs minimum number of frames
0 Defined by the computer architecture
0 Maximum of course is total frames in the system
0 Two major allocation schemes
0 fixed allocation
0 priority allocation
0 Many variations

. &
— oM
N

£ “ (4
4 Ay

Operating System Concepts — 9t Edition 9.14 Silberschatz, Galvin and Gagne ©2013

-

.

N Fixed Allocation

0 Equal allocation — For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames

0 Keep some as free frame buffer pool

0 Proportional allocation — Allocate according to the size of process
0 Dynamic as degree of multiprogramming, process sizes

change

9 m = 64
— S; = size of process p; $1=10
— S = ZSi S, = 127
— m = total number of frames a -9 62~4

137
— a; =allocation for p; = Si m 127
I I S 8.2 :EX 62 ~ 57

Operating System Concepts — 9t Edition 9.15 Silberschatz, Galvin and Gagne ©2013

=
B

g o _
o Priority Allocation

0 Use a proportional allocation scheme using priorities rather
than size

O If process P, generates a page fault,
0 select for replacement one of its frames

0 select for replacement a frame from a process with lower
priority number

. &
—Y
e

£ “ (4
4 Ay

Operating System Concepts — 9t Edition 9.16 Silberschatz, Galvin and Gagne ©2013

¥

/|

=

|

g5 Global vs. Local Allocation

0 Global replacement — process selects a replacement frame
from the set of all frames; one process can take a frame from

another
0 But then process execution time can vary greatly

0 But greater throughput so more common

0 Local replacement — each process selects from only its own
set of allocated frames

0 More consistent per-process performance
0 But possibly underutilized memory

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 9.17

=

0 If a process does not have “enough” pages, the page-fault rate is
very high

0 Page fault to get page
0 Replace existing frame
0 But quickly need replaced frame back
0 This leads to:
» Low CPU utilization

» Operating system thinking that it needs to increase the
degree of multiprogramming

» Another process added to the system

0 Thrashing = a process is busy swapping pages in and out

=T
/"»:;\\1
gl “_f..'_’

Operating System Concepts — 9th Edition 9.18 Silberschatz, Galvin and Gagne ©2013

R i g
g T Thrashing (Cont.)
A
.5 thrashing
N
G

degree of multiprogramming

o g\
=% 3
g]
_Jnv
7 WS
L AgK

Operating System Concepts — 9th Edition 9.19 Silberschatz, Galvin and Gagne ©2013

-

N

-
AL

(o]

557 Demand Paging and Thrashing

0 Why does demand paging work?
Locality model

0 A locality is a set of pages actively used together
0 Process migrates from one locality to another

0 Localities may overlap
O

Localities are defined by the program structure and its data
structure

0 Why does thrashing occur?
> size of locality > total memory size

0 Limit effects by using local or priority page replacement

Operating System Concepts — 9t Edition 9.20 Silberschatz, Galvin and Gagne ©2013

=

N

«4%7 Locality In A Memory-Reference Pattern

Lull H‘ H |H
34 W = ‘
M e "‘HHHHIHIH“HW"“””' """ A \\|\\||\\In\|\\|\H|nummmmlmw il e
il o

32— i A T i :
YT ‘ ‘ | | [i | ’W MH IM II|| ‘ﬂ" || ‘
LMH 1 . | | .I‘n |\‘ |!'l\ n'p {‘ I‘ H'lm ---- ; H
| t
it A
30 " | ; f ‘“\ ﬂ‘ ‘‘‘‘‘‘ -
|I \ llh \MM“H IM mewm |H”HIHHHIl||"I\\Il”l\:HHHIHHHHH'\N \‘ .

28 ‘
Al

»
»
L
o .
ol WWWHM
S 25y
2 " '. 'W\ I
° s
;i w i
24 Y W
|””U' ' i

i
i e

”‘.q} 'Himh\|m"w"n"“‘“*l"P‘"‘”“‘"'h NH"“'N"“H bt WW«NW"
22
~ L

Hl\IIIHIWIHIIHIHIIM AN
e ‘|

§ ‘

€ 7‘ i G L | <.;::;u:':11::m:'“” “nmw'm"w”un d‘?!f\”!!!!
CS TR T S WT |
Sl f”.,‘I"\|\’4|\"”'”!'”\H‘H'i””'“||””‘|'H||‘ uwmhmuummmmlll il “iHIUHHUIIHIH i qnumm‘w‘

execution time ——

Operating System Concepts — 9th Edition 9.21 Silberschatz, Galvin and Gagne ©2013

" Working-Set Model

0 A =working-set window = a fixed number of page references
Example: 10,000 instructions

0 WSS, (working set of Process P,;) =
total number of pages referenced in the most recent A (varies in time)

0 if A too small will not encompass entire locality
0 if A too large will encompass several localities
0 if A =0 = will encompass entire program

0 D =X WSS, = total demand frames
0 Approximation of locality

0 if D> m = Thrashing

0 Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

WS(t,) = {1,2.5,6,7) WS(t,) = {34}

=y
'/"»:,;_.‘\\1
gl “_f..'_’

Operating System Concepts — 9t Edition 9.22 Silberschatz, Galvin and Gagne ©2013

=

[LA

g‘,;:::‘l | Keeping Track of the Working Set

0 Approximate the working-set model with interval timer + a reference bit
0 Example: A =10,000

0 Timer interrupts after every 5000 time units

0 Keep in memory 2 bits for each page

0 Whenever a timer interrupts copy and sets the values of all
reference bitsto 0

0 If one of the bits in memory = 1 = page in working set
0 Why is this not completely accurate?

0 Improvement = 10 bits and interrupt every 1000 time units

=y
. /"»:;\\1
gl “_f..'_’

Operating System Concepts — 9t Edition 9.23 Silberschatz, Galvin and Gagne ©2013

=
- —_'E‘:,

Py

G5 Page-Fault Frequency

0 More direct approach than WSS

0 Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

0 If actual rate too low, process loses frame
0 If actual rate too high, process gains frame

A

= increase number
= of frames
..S upper bound
o
(@)}
(]
o
lower bound
decrease number
of frames

\ 4

number of frames

P
U Ande

Operating System Concepts — 9t Edition 9.24 Silberschatz, Galvin and Gagne ©2013

«$%7 Working Sets and Page Fault Rates

n Direct relationship between working set of a process and its

page-fault rate

n Working set changes over time

n Peaks and valleys over time

working set
1
page
fault
rate
0 >
time
Operating System Concepts — 9t Edition 9.25

SEERAM|
-
£ h& .
L g

Silberschatz, Galvin and Gagne ©2013

