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Course Outline

 Processes
 CPU Scheduling
 Synchronization & Deadlock
 Memory Management

 File Systems & I/O
 Distributed Systems
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Today: Memory Management

 Terminology
 Uniprogramming
 Multiprogramming

 Contiguous memory allocation
 Fragmentation, compaction, swapping
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Memory Management

 Where in memory is executing process?
 How do we allow multiple processes to share 

main memory?
 What’s an address and how is one interpreted?
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Background:
Computer Architecture

 Executable program on disk
 OS loads program into memory
 CPU fetches instructions & data from 

memory while executing program
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Where Do Addresses Come From?
Instruction & data addresses
 Compile-time:

 Exact physical location 
in memory starting from 
fixed position k

 Load-time:
 OS determines process’s 

starting position, fixes up 
addresses

 Execution time:
 OS can place address 

anywhere in physical 
memory

 Used by most general-
purpose OS



6

Memory Management:
Terminology

 Segment: chunk of 
memory assigned to 
process

 Physical address: real 
address in memory

 Virtual address: 
address relative to start 
of process’s address 
space
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Uniprogramming

Only one program at a time: memory management is 
easy

 OS gets fixed region of memory (e.g., highest)
 One process at a time

 Load at address 0
 Executes in contiguous memory

 Compiler generates physical addresses
 Max address = memory size – OS size
 OS protected from process by checking addresses
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Example: Uniprogramming

 Simple – but no overlap of I/O, 
computation



9

Multiprogramming Requirements

 Transparency
 No process aware memory is shared
 Process has no constraints on physical memory

 Safety
 Processes cannot corrupt each other or OS

 Efficiency
 Performance not degraded due to sharing
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Contiguous memory allocation

 Put OS in high memory
 Process starts at 0

 Max addr = memory 
size – OS size

 Load process by 
allocating contiguous 
segment for process

 Smallest addr = base, 
largest = limit
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Address Translation

 Hardware adds relocation register (base) to 
virtual address to get physical address

 Hardware compares address with limit 
register
 Test fails → trap
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Properties

 Transparency
 Processes largely unaware of sharing

 Safety
 Each memory reference checked

 Efficiency
 Memory checks fast if done in hardware
 But: if process grows, may have to be moved 

(SLOW)



13

Pros & Cons

 Advantages
 Simple, fast hardware

 Two special registers, add & compare

 Disadvantages
 Process limited to physical memory size
 Degree of multiprogramming limited

 All memory of active processes must fit in memory
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Allocating “holes”

 As processes enter system, grow & terminate, OS must track 
available and in-use memory

 Can leave holes
 OS must decide where to put new processes
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Memory Allocation Policies

 First-fit:
 Use first hole in which process fits

 Best-fit:
 Use smallest hole that’s large enough

 Worst-fit:
 Use largest hole

 What’s best? First-fit and best-fit comparable, better 
than worst-fit in speed and memory utilization
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Fragmentation

 Fragmentation = % memory unavailable for 
allocation, but not in use

 External fragmentation:
 Large # of small holes s.t. even the total size satisfies a 

request; no contiguous chunk can be found
 Caused by repeated unloading & loading

 Internal fragmentation:
 Space inside process allocations

 Unavailable to other processes
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Compaction

 Can make space available by shuffling 
process space 
 Eliminate holes
 Place free memory together
 Cannot move a process if addresses are 

determined at compile or load time 
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Compaction Example

 Issues
 Amount of 

memory moved
 Size of created 

block
 Other choices?
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Alternative: Swapping

 Swapping = copy process to disk, release all 
memory
 When process active, must reload
 Static relocation: same position(!)
 Dynamic relocation: ok

 Drawback?
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Summary

 Processes must reside in memory to execute
 Generally use virtual addresses

 Translated to physical addresses before 
accessing memory

 Contiguous memory allocation:
 Allows processes to share memory
 Pros and cons
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Paging

 Motivation
 Page Tables
 Hardware Support
 Benefits
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Problems with Continuous memory 
allocation

 Processes don’t (usually) use its entire space 
in memory all the time

 Fragmentation problematic
 Compaction expensive



23

Alternative: Paging

 Divide logical memory into 
fixed-sized pages (4K, 8K)

 Divide physical memory into 
fixed-sized frames
 Pages & frames same size
 OS manages pages

 Moves, removes, reallocates
 Disk space: blocks same size as 

frames 
 Pages copied to and from disk 

to frames

A
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Example: Page Layout

 How does this help?
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Paging Advantages

 Most programs obey 
90/10 “rule”
 90% of time spent 

accessing 10% of 
memory

 Exploiting this rule:
 Only keep “live” parts 

of process in memory

A

B

A
B
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Paging Advantages

 “Hole-fitting problem” vanishes!
 Logical memory contiguous
 Physical memory not required to be

 Eliminates external fragmentation
 But not internal (why not?)

 But: Complicates address lookup...
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Example: Page Layout

 So how do we resolve addresses?
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Paging

 Motivation
 Page Tables
 Hardware Support

 Benefits
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Paging Hardware

 Processes use virtual addresses
 Addresses start at 0 or other known address
 OS lays process down on pages

 MMU (memory-management unit):
 Hardware support for paging
 Translates virtual to physical addresses
 Uses page table to keep track of frame assigned 

to memory page
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Paging Hardware: Diagram
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Paging Hardware: Intuition

 Paging: form of dynamic relocation
 Virtual address bound by paging hardware to physical 

address
 Page table: similar to a set of relocation registers
 Mapping – invisible to process

 OS maintains mapping
 H/W does translation

 Protection – provided by same mechanisms as in 
dynamic relocation



32

Paging Hardware: Nitty-Gritty

 Page size (= frame size):
 Typically power of 2 between 512 & 8192 bytes
 Linux, Windows: 4K; Solaris: 8K
 Support for larger page sizes varies (e.g., 128K)

 Use of powers of 2 simplifies translation of 
virtual to physical addresses
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Address Translation

 Powers of 2:
 Virtual address space: 

size 2m

 Page size 2n

 High-order m-n bits 
of virtual address 
select page

 Low order n bits select 
offset in page
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Address Translation: Example

 Assume 1 byte 
addressing, each page 
contains 4 bytes: 
 Length of p, d?
 Given virtual 

address 0, 4, 10, 13, 
do virtual to 
physical translation

each entry uses 
1 byte
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Making Paging Efficient

 Where should the page table go?
 Registers:

 Pros? Cons?

 Memory:
 Pros? Cons?
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Translation Lookaside Buffer (TLB)

 Small, fast-lookup hardware cache
 TLB sizes: 8 to 2048 entries
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TLB: Diagram

 v = valid bit: entry is up-to-date
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Effectiveness of TLB

 Processes exhibit locality of reference
 Temporal locality: processes tend to reference 

same items repeatedly
 Spatial locality: processes tend to reference 

items near each other (e.g., on same page)
 Locality in memory accesses →

locality in address translation
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Benefits from TLB

 Example: 
 Hit ratio: 0.8; 
 on average: search TLB: 20 nanosec; search 

memory: 100 nanosec
 What is the average cost to access/read an item 

in memory?
 What if  no TLB is used? 
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Managing TLB:
Process Initialization & Execution

 Process arrives, needs k pages
 If k page frames free, allocate;

else free frames that are no longer needed
 OS:

 puts pages in frames
 puts frame numbers into page table
 marks all TLB entries as invalid (flush)
 starts process
 loads TLB entries as pages are accessed,

replaces entries when full
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Managing TLB:
Context Switches

 Extend Process Control Block (PCB) with:
 Page table
 Copy of TLB (optional)

 Context switch:
 Copy page table to PCB
 Copy TLB to PCB, Flush TLB (optional)
 Restore page table
 Restore TLB (optional)

 Use multilevel paging if tables too big (see text)
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Paging

 Motivation
 Page Tables
 Hardware Support
 Benefits
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Benefits: Compared to Contiguous-
Memory Allocation 

 Eliminates external fragmentation (thus 
avoiding need for compaction)

 Enables processes to run when only partially 
loaded in main memory
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Benefits: Allow Sharing

 Paging allows sharing of memory across 
processes
 Shared pages –different virtual addresses,

point to same physical address
 Compiler marks “text” segment (i.e., code) of 

applications (e.g., emacs) - read-only
 OS: keeps track of such segments

 Reuses if another instance of app arrives
 Can greatly reduce memory requirements
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Paging Disadvantages

 Paging: some costs
 Translating from virtual addresses to physical 

addresses efficiently requires hardware support
 Larger TLB → more efficient, but more expensive

 More complex operating system required to 
maintain page table

 More expensive context switches (why?)
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Demand-Paged VM

 Reading pages
 Writing pages

 Swap space
 Page eviction
 Cost of paging
 Page replacement algorithms

 Evaluation
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Demand-Paging Diagram
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Key Policy Decisions

 Two key questions:
 When do we read page from disk?
 When do we write page to disk?
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Reading Pages

 Read on-demand:
 OS loads page on its first reference
 May force an eviction of page in RAM
 Pause while loading page = page fault

 Can also perform pre-paging:
 OS guesses which page will next be needed, and 

begins loading it
 Advantages? Disadvantages?

 Most systems just do demand paging
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Demand Paging

 On every reference, check if page is in 
memory (valid bit in page table)

 If not: trap to OS
 OS checks address validity, and

 Selects victim page to be replaced
 Begins loading new page from disk
 Switches to other process (demand paging = 

implicit I/O)
 Note: must restart instruction later
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Demand Paging, Continued

 Interrupt signals page arrival, then:
 OS updates page table entry
 Continues faulting process

 Stops current process

 We could continue currently executing 
process – but why not?

 And where does the victim page go?



52

Demand Paging, Continued

 Interrupt signals page arrival, then:
 OS updates page table entry
 Continues faulting process

 Stops current process

 We could continue currently executing 
process – but why not?
 Page just brought in could get paged out…



53

Virtual Memory Locations

 VM pages can now exist in one or more of 
following places:
 Physical memory (in RAM)
 Swap space (victim page)
 Filesystem (why?)
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Page Replacement

 Process is given a fixed memory space of n
pages

 Question:
 process requests a page 
 page is not in memory, all n pages are used
 which page should be evicted from memory?
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Page Replacement: Cost of Paging

 Worst-case analysis
 Easy to construct adversary example:

every page requires page fault
 Not much you can do, paging useless

A, B, C, D, E, F, G, H, I, J, A...

size of available memory
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Page Replacement: Cost of Paging, 
cont’d

 But: processes exhibit locality,
so performance generally not bad
 Temporal locality: processes tend to reference 

same items repeatedly
 Spatial locality: processes tend to reference 

items near each other (e.g., on same page)
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Metric: Effective Access Time

 Let p = probability of page fault  (0 ≤ p ≤ 1)
ma = memory access time

 Effective access time =
(1 – p) * ma + p * page fault service time
 Memory access = 200ns, page fault = 25ms:

effective access time = (1-p)*200 + 
p*25,000,000
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Evaluating Page Replacement 
Algorithms

 Average-case:
 Empirical studies – real application behavior

 Theory: competitive analysis
 Can’t do better than optimal
 How far (in terms of faults) is algorithm from 

optimal in worst-case?
 Competitive ratio

 If algorithm can’t do worse than 2x optimal,
it’s 2-competitive
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Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)
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MIN/OPT

 Invented by Belady (“MIN”), now known as 
“OPT”: optimal page replacement
 Evict page to be accessed furthest in the future

 Provably optimal policy
 Just one small problem...

 Requires predicting the future
 Useful point of comparison
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MIN/OPT example

 Page faults: 5
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RANDOM

 Evict any page
 Works surprisingly well
 Theoretically: very good
 Not used in practice:

takes no advantage of locality
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LRU

 Evict page that has not been used in longest 
time (least-recently used)
 Approximation of MIN if recent past is good 

predictor of future
 A variant of LRU used in all real operating 

systems
 Competitive ratio: n, (n: # of page frames)

 Best possible for deterministic algs.
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LRU example

 Page faults: ?
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LRU example

 Page faults: 5
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LRU, example II

 Page faults: ?
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LRU, example II

 Page faults: 12
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FIFO

 First-in, first-out: evict oldest page
 Also has competitive ratio n

 But: performs miserably in practice!
 LRU takes advantage of locality
 FIFO does not

 Suffers from Belady’s anomaly:
 More memory can mean more paging!
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FIFO & Belady’s Anomaly

 Request sequence
A B C D A B E A B C D E
 Q1: # of page faults when n=3?
 Q2: # of page faults when n=4?
 Q3: what are the results under LRU?
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FIFO & Belady’s Anomaly

• When n=3, 9 page faults
• When n=4, 10 page faults
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LRU: No Belady’s Anomaly

• When n=3, 10 page faults
• When n=4, 8 page faults
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Why no anomaly for LRU?

 “Stack” property:
 Pages in memory for memory size of n are also in 

memory for memory size of n+1
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MRU

 Evict most-recently used page
 Shines for LRU’s worst-case: loop that 

exceeds RAM size

 What we really want: adaptive algorithms
(e.g., EELRU – Kaplan & Smaragdakis)

A, B, C, D, A, B, C, D, ...

size of available memory
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Summary

 Reading pages
 Writing pages

 Swap space
 Page eviction
 Cost of paging
 Page replacement algorithms

 Evaluation


