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Course Outline

 Processes
 CPU Scheduling
 Synchronization & Deadlock
 Memory Management

 File Systems & I/O
 Distributed Systems
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Today: Memory Management

 Terminology
 Uniprogramming
 Multiprogramming

 Contiguous memory allocation
 Fragmentation, compaction, swapping
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Memory Management

 Where in memory is executing process?
 How do we allow multiple processes to share 

main memory?
 What’s an address and how is one interpreted?
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Background:
Computer Architecture

 Executable program on disk
 OS loads program into memory
 CPU fetches instructions & data from 

memory while executing program
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Where Do Addresses Come From?
Instruction & data addresses
 Compile-time:

 Exact physical location 
in memory starting from 
fixed position k

 Load-time:
 OS determines process’s 

starting position, fixes up 
addresses

 Execution time:
 OS can place address 

anywhere in physical 
memory

 Used by most general-
purpose OS
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Memory Management:
Terminology

 Segment: chunk of 
memory assigned to 
process

 Physical address: real 
address in memory

 Virtual address: 
address relative to start 
of process’s address 
space
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Uniprogramming

Only one program at a time: memory management is 
easy

 OS gets fixed region of memory (e.g., highest)
 One process at a time

 Load at address 0
 Executes in contiguous memory

 Compiler generates physical addresses
 Max address = memory size – OS size
 OS protected from process by checking addresses
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Example: Uniprogramming

 Simple – but no overlap of I/O, 
computation
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Multiprogramming Requirements

 Transparency
 No process aware memory is shared
 Process has no constraints on physical memory

 Safety
 Processes cannot corrupt each other or OS

 Efficiency
 Performance not degraded due to sharing
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Contiguous memory allocation

 Put OS in high memory
 Process starts at 0

 Max addr = memory 
size – OS size

 Load process by 
allocating contiguous 
segment for process

 Smallest addr = base, 
largest = limit
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Address Translation

 Hardware adds relocation register (base) to 
virtual address to get physical address

 Hardware compares address with limit 
register
 Test fails → trap



12

Properties

 Transparency
 Processes largely unaware of sharing

 Safety
 Each memory reference checked

 Efficiency
 Memory checks fast if done in hardware
 But: if process grows, may have to be moved 

(SLOW)
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Pros & Cons

 Advantages
 Simple, fast hardware

 Two special registers, add & compare

 Disadvantages
 Process limited to physical memory size
 Degree of multiprogramming limited

 All memory of active processes must fit in memory
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Allocating “holes”

 As processes enter system, grow & terminate, OS must track 
available and in-use memory

 Can leave holes
 OS must decide where to put new processes
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Memory Allocation Policies

 First-fit:
 Use first hole in which process fits

 Best-fit:
 Use smallest hole that’s large enough

 Worst-fit:
 Use largest hole

 What’s best? First-fit and best-fit comparable, better 
than worst-fit in speed and memory utilization
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Fragmentation

 Fragmentation = % memory unavailable for 
allocation, but not in use

 External fragmentation:
 Large # of small holes s.t. even the total size satisfies a 

request; no contiguous chunk can be found
 Caused by repeated unloading & loading

 Internal fragmentation:
 Space inside process allocations

 Unavailable to other processes
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Compaction

 Can make space available by shuffling 
process space 
 Eliminate holes
 Place free memory together
 Cannot move a process if addresses are 

determined at compile or load time 
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Compaction Example

 Issues
 Amount of 

memory moved
 Size of created 

block
 Other choices?
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Alternative: Swapping

 Swapping = copy process to disk, release all 
memory
 When process active, must reload
 Static relocation: same position(!)
 Dynamic relocation: ok

 Drawback?



20

Summary

 Processes must reside in memory to execute
 Generally use virtual addresses

 Translated to physical addresses before 
accessing memory

 Contiguous memory allocation:
 Allows processes to share memory
 Pros and cons
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Paging

 Motivation
 Page Tables
 Hardware Support
 Benefits
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Problems with Continuous memory 
allocation

 Processes don’t (usually) use its entire space 
in memory all the time

 Fragmentation problematic
 Compaction expensive
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Alternative: Paging

 Divide logical memory into 
fixed-sized pages (4K, 8K)

 Divide physical memory into 
fixed-sized frames
 Pages & frames same size
 OS manages pages

 Moves, removes, reallocates
 Disk space: blocks same size as 

frames 
 Pages copied to and from disk 

to frames

A
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Example: Page Layout

 How does this help?
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Paging Advantages

 Most programs obey 
90/10 “rule”
 90% of time spent 

accessing 10% of 
memory

 Exploiting this rule:
 Only keep “live” parts 

of process in memory

A

B

A
B
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Paging Advantages

 “Hole-fitting problem” vanishes!
 Logical memory contiguous
 Physical memory not required to be

 Eliminates external fragmentation
 But not internal (why not?)

 But: Complicates address lookup...
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Example: Page Layout

 So how do we resolve addresses?
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Paging

 Motivation
 Page Tables
 Hardware Support

 Benefits
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Paging Hardware

 Processes use virtual addresses
 Addresses start at 0 or other known address
 OS lays process down on pages

 MMU (memory-management unit):
 Hardware support for paging
 Translates virtual to physical addresses
 Uses page table to keep track of frame assigned 

to memory page
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Paging Hardware: Diagram
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Paging Hardware: Intuition

 Paging: form of dynamic relocation
 Virtual address bound by paging hardware to physical 

address
 Page table: similar to a set of relocation registers
 Mapping – invisible to process

 OS maintains mapping
 H/W does translation

 Protection – provided by same mechanisms as in 
dynamic relocation
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Paging Hardware: Nitty-Gritty

 Page size (= frame size):
 Typically power of 2 between 512 & 8192 bytes
 Linux, Windows: 4K; Solaris: 8K
 Support for larger page sizes varies (e.g., 128K)

 Use of powers of 2 simplifies translation of 
virtual to physical addresses
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Address Translation

 Powers of 2:
 Virtual address space: 

size 2m

 Page size 2n

 High-order m-n bits 
of virtual address 
select page

 Low order n bits select 
offset in page
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Address Translation: Example

 Assume 1 byte 
addressing, each page 
contains 4 bytes: 
 Length of p, d?
 Given virtual 

address 0, 4, 10, 13, 
do virtual to 
physical translation

each entry uses 
1 byte
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Making Paging Efficient

 Where should the page table go?
 Registers:

 Pros? Cons?

 Memory:
 Pros? Cons?
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Translation Lookaside Buffer (TLB)

 Small, fast-lookup hardware cache
 TLB sizes: 8 to 2048 entries
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TLB: Diagram

 v = valid bit: entry is up-to-date
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Effectiveness of TLB

 Processes exhibit locality of reference
 Temporal locality: processes tend to reference 

same items repeatedly
 Spatial locality: processes tend to reference 

items near each other (e.g., on same page)
 Locality in memory accesses →

locality in address translation
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Benefits from TLB

 Example: 
 Hit ratio: 0.8; 
 on average: search TLB: 20 nanosec; search 

memory: 100 nanosec
 What is the average cost to access/read an item 

in memory?
 What if  no TLB is used? 
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Managing TLB:
Process Initialization & Execution

 Process arrives, needs k pages
 If k page frames free, allocate;

else free frames that are no longer needed
 OS:

 puts pages in frames
 puts frame numbers into page table
 marks all TLB entries as invalid (flush)
 starts process
 loads TLB entries as pages are accessed,

replaces entries when full
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Managing TLB:
Context Switches

 Extend Process Control Block (PCB) with:
 Page table
 Copy of TLB (optional)

 Context switch:
 Copy page table to PCB
 Copy TLB to PCB, Flush TLB (optional)
 Restore page table
 Restore TLB (optional)

 Use multilevel paging if tables too big (see text)
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Paging

 Motivation
 Page Tables
 Hardware Support
 Benefits
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Benefits: Compared to Contiguous-
Memory Allocation 

 Eliminates external fragmentation (thus 
avoiding need for compaction)

 Enables processes to run when only partially 
loaded in main memory
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Benefits: Allow Sharing

 Paging allows sharing of memory across 
processes
 Shared pages –different virtual addresses,

point to same physical address
 Compiler marks “text” segment (i.e., code) of 

applications (e.g., emacs) - read-only
 OS: keeps track of such segments

 Reuses if another instance of app arrives
 Can greatly reduce memory requirements
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Paging Disadvantages

 Paging: some costs
 Translating from virtual addresses to physical 

addresses efficiently requires hardware support
 Larger TLB → more efficient, but more expensive

 More complex operating system required to 
maintain page table

 More expensive context switches (why?)
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Demand-Paged VM

 Reading pages
 Writing pages

 Swap space
 Page eviction
 Cost of paging
 Page replacement algorithms

 Evaluation
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Demand-Paging Diagram
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Key Policy Decisions

 Two key questions:
 When do we read page from disk?
 When do we write page to disk?
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Reading Pages

 Read on-demand:
 OS loads page on its first reference
 May force an eviction of page in RAM
 Pause while loading page = page fault

 Can also perform pre-paging:
 OS guesses which page will next be needed, and 

begins loading it
 Advantages? Disadvantages?

 Most systems just do demand paging



50

Demand Paging

 On every reference, check if page is in 
memory (valid bit in page table)

 If not: trap to OS
 OS checks address validity, and

 Selects victim page to be replaced
 Begins loading new page from disk
 Switches to other process (demand paging = 

implicit I/O)
 Note: must restart instruction later
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Demand Paging, Continued

 Interrupt signals page arrival, then:
 OS updates page table entry
 Continues faulting process

 Stops current process

 We could continue currently executing 
process – but why not?

 And where does the victim page go?
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Demand Paging, Continued

 Interrupt signals page arrival, then:
 OS updates page table entry
 Continues faulting process

 Stops current process

 We could continue currently executing 
process – but why not?
 Page just brought in could get paged out…
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Virtual Memory Locations

 VM pages can now exist in one or more of 
following places:
 Physical memory (in RAM)
 Swap space (victim page)
 Filesystem (why?)
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Page Replacement

 Process is given a fixed memory space of n
pages

 Question:
 process requests a page 
 page is not in memory, all n pages are used
 which page should be evicted from memory?
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Page Replacement: Cost of Paging

 Worst-case analysis
 Easy to construct adversary example:

every page requires page fault
 Not much you can do, paging useless

A, B, C, D, E, F, G, H, I, J, A...

size of available memory
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Page Replacement: Cost of Paging, 
cont’d

 But: processes exhibit locality,
so performance generally not bad
 Temporal locality: processes tend to reference 

same items repeatedly
 Spatial locality: processes tend to reference 

items near each other (e.g., on same page)
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Metric: Effective Access Time

 Let p = probability of page fault  (0 ≤ p ≤ 1)
ma = memory access time

 Effective access time =
(1 – p) * ma + p * page fault service time
 Memory access = 200ns, page fault = 25ms:

effective access time = (1-p)*200 + 
p*25,000,000
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Evaluating Page Replacement 
Algorithms

 Average-case:
 Empirical studies – real application behavior

 Theory: competitive analysis
 Can’t do better than optimal
 How far (in terms of faults) is algorithm from 

optimal in worst-case?
 Competitive ratio

 If algorithm can’t do worse than 2x optimal,
it’s 2-competitive
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Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)
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MIN/OPT

 Invented by Belady (“MIN”), now known as 
“OPT”: optimal page replacement
 Evict page to be accessed furthest in the future

 Provably optimal policy
 Just one small problem...

 Requires predicting the future
 Useful point of comparison
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MIN/OPT example

 Page faults: 5
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RANDOM

 Evict any page
 Works surprisingly well
 Theoretically: very good
 Not used in practice:

takes no advantage of locality
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LRU

 Evict page that has not been used in longest 
time (least-recently used)
 Approximation of MIN if recent past is good 

predictor of future
 A variant of LRU used in all real operating 

systems
 Competitive ratio: n, (n: # of page frames)

 Best possible for deterministic algs.
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LRU example

 Page faults: ?
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LRU example

 Page faults: 5
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LRU, example II

 Page faults: ?
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LRU, example II

 Page faults: 12
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FIFO

 First-in, first-out: evict oldest page
 Also has competitive ratio n

 But: performs miserably in practice!
 LRU takes advantage of locality
 FIFO does not

 Suffers from Belady’s anomaly:
 More memory can mean more paging!
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FIFO & Belady’s Anomaly

 Request sequence
A B C D A B E A B C D E
 Q1: # of page faults when n=3?
 Q2: # of page faults when n=4?
 Q3: what are the results under LRU?
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FIFO & Belady’s Anomaly

• When n=3, 9 page faults
• When n=4, 10 page faults
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LRU: No Belady’s Anomaly

• When n=3, 10 page faults
• When n=4, 8 page faults
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Why no anomaly for LRU?

 “Stack” property:
 Pages in memory for memory size of n are also in 

memory for memory size of n+1
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MRU

 Evict most-recently used page
 Shines for LRU’s worst-case: loop that 

exceeds RAM size

 What we really want: adaptive algorithms
(e.g., EELRU – Kaplan & Smaragdakis)

A, B, C, D, A, B, C, D, ...

size of available memory
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Summary

 Reading pages
 Writing pages

 Swap space
 Page eviction
 Cost of paging
 Page replacement algorithms

 Evaluation


