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Final Exam Review
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Computer System Structure

Computer system can be divided into four components:
Hardware – provides basic computing resources
 CPU, memory, I/O devices

Operating system
 Controls and coordinates use of hardware among various 

applications and users
Application programs – define the ways in which the system 
resources are used to solve the computing problems of the 
users
Word processors, compilers, web browsers, database 

systems, video games
Users
 People, machines, other computers
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Four Components of a Computer System
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Operating System Definition

OS is a resource allocator
Manages all resources
Decides between conflicting requests for efficient and 
fair resource use

OS is a control program
Controls execution of programs to prevent errors and 
improper use of the computer
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Computer System Organization

Computer-system operation
One or more CPUs, device controllers connect through common bus 
providing access to shared memory
Concurrent execution of CPUs and devices competing for memory 
cycles. A memory controller synchronizes access to the memory.
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Storage Hierarchy

Storage systems organized in hierarchy
Speed
Cost
Volatility

Caching – copying information into faster storage system; 
main memory can be viewed as a cache for secondary 
storage
Device Driver for each device controller to manage I/O

Provides uniform interface between controller and 
kernel
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Storage-Device Hierarchy
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Caching

Important principle, performed at many levels in a computer 
(in hardware, operating system, software)
Information in use copied from slower to faster storage 
temporarily
Faster storage (cache) checked first to determine if 
information is there

If it is, information used directly from the cache (fast)
If not, data copied to cache and used there

Cache smaller than storage being cached
Cache management important design problem
Cache size and replacement policy
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Operating System Structure

Multiprogramming (Batch system) needed for efficiency
Single user cannot keep CPU and I/O devices busy at all times
Multiprogramming organizes jobs (code and data) so CPU always has one 
to execute
A subset of total jobs in system is kept in memory
One job selected and run via job scheduling
When it has to wait (for I/O for example), OS switches to another job

Timesharing (multitasking) is logical extension in which CPU switches jobs 
so frequently that users can interact with each job while it is running, creating 
interactive computing

Response time should be < 1 second
Each user has at least one program executing in memory process
If several jobs ready to run at the same time  CPU scheduling
If processes don’t fit in memory, swapping moves them in and out to run
Virtual memory allows execution of processes not completely in memory
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Operating-System Operations (cont.)

Dual-mode operation allows OS to protect itself and other system 
components

User mode and kernel mode 
Mode bit provided by hardware (e.g., CS register in CPU)
 Provides ability to distinguish when system is running user code or 

kernel code
 Some instructions designated as privileged, only executable in kernel 

mode
 System call changes mode to kernel, return from call resets it to user
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Operating System Services

Operating systems provide an environment for execution of programs 
and services to programs and users
One set of operating-system services provides functions that are 
helpful to the user:

User interface - Almost all operating systems have a user 
interface (UI).
 Varies between Command-Line (CLI), Graphics User 

Interface (GUI), Batch
Program execution - The system must be able to load a 
program into memory and to run that program, end execution, 
either normally or abnormally (indicating error)
I/O operations - A running program may require I/O, which may 
involve a file or an I/O device
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Operating System Services (Cont.)

One set of operating-system services provides functions that are helpful to 
the user (Cont.):

File-system manipulation - The file system is of particular interest. 
Programs need to read and write files and directories, create and delete 
them, search them, list file Information, permission management.
Communications – Processes may exchange information, on the same 
computer or between computers over a network
 Communications may be via shared memory or through message 

passing (packets moved by the OS)
Error detection – OS needs to be constantly aware of possible errors
 May occur in the CPU and memory hardware, in I/O devices, in user 

program
 For each type of error, OS should take the appropriate action to 

ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and 

programmer’s abilities to efficiently use the system
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Operating System Services (Cont.)

Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing

Resource allocation - When  multiple users or multiple jobs running 
concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage, 

I/O devices.
Accounting - To keep track of which users use how much and what 
kinds of computer resources
Protection and security - The owners of information stored in a 
multiuser or networked computer system may want to control use of 
that information, concurrent processes should not interfere with each 
other
 Protection involves ensuring that all access to system resources is 

controlled
 Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access 
attempts
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A View of Operating System Services
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System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)
Mostly accessed by programs via a high-level 
Application Programming Interface (API) rather than 
direct system call use
Three most common APIs are Windows API for Windows, 
POSIX API for POSIX-based systems (including virtually 
all versions of UNIX, Linux, and Mac OS X), and Java API 
for the Java virtual machine (JVM)
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System Call Implementation

Typically, a number associated with each system call
System-call interface maintains a table indexed according to 
these numbers

The system call interface invokes  the intended system call in OS 
kernel and returns status of the system call and any return values
The caller need know nothing about how the system call is 
implemented

Just needs to obey API and understand what OS will do as a 
result call
Most details of  OS interface hidden from programmer by API  
 Managed by run-time support library (set of functions built 

into libraries included with compiler)



1.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship
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Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some 
approaches have proven successful

Internal structure of different Operating Systems  can vary widely

Start the design by defining goals and specifications 

Highest level: affected by choice of hardware, type of system

The requirements can be divided into User and System goals
User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast
System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-free, 
and efficient
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Operating System Design and Implementation (Cont.)

Important principle to separate
Policy:   What will be done?
Mechanism:  How to do it?
Mechanisms determine how to do something, policies decide 
what will be done
The separation of policy from mechanism is a very important 
principle, it allows maximum flexibility if policy decisions are to 
be changed later (example – timer)
Specifying and designing an OS is highly creative task of 
software engineering
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Operating System Structure

General-purpose OS is very large program
Various ways to structure ones

Simple structure – MS-DOS
More complex -- UNIX
Layered – an abstrcation
Microkernel -Mach
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Process Concept

An operating system executes a variety of programs:
Batch system – jobs
Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must 
progress in sequential fashion
Multiple parts

The program code, also called text section
Current activity including program counter, processor 
registers
Stack containing temporary data
 Function parameters, return addresses, local variables

Data section containing global variables
Heap containing memory dynamically allocated during run time
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Process State

As a process executes, it changes state
new:  The process is being created
running:  Instructions are being executed
waiting:  The process is waiting for some event to occur
ready:  The process is waiting to be assigned to a processor
terminated:  The process has finished execution



1.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State
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Process Control Block (PCB)

Information associated with each process 
(also called task control block)

Process state – running, waiting, etc
Program counter – location of 
instruction to next execute
CPU registers – contents of all process-
centric registers
CPU scheduling information- priorities, 
scheduling queue pointers
Memory-management information –
memory allocated to the process
Accounting information – CPU used, 
clock time elapsed since start, time 
limits
I/O status information – I/O devices 
allocated to process, list of open files
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CPU Switch From Process to Process
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Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for 
time sharing
Process scheduler selects among available processes for 
next execution on CPU
Maintains scheduling queues of processes

Job queue – set of all processes in the system
Ready queue – set of all processes residing in main 
memory, ready and waiting to execute
Device queues – set of processes waiting for an I/O device
Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

Queueing diagram represents queues, resources, flows
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Schedulers

Short-term scheduler  (or CPU scheduler) – selects which process should 
be executed next and allocates CPU

Sometimes the only scheduler in a system
Short-term scheduler is invoked frequently (milliseconds)  (must be 
fast)

Long-term scheduler  (or job scheduler) – selects which processes should 
be brought into the ready queue

Long-term scheduler is invoked  infrequently (seconds, minutes) 
(may be slow)
The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:
I/O-bound process – spends more time doing I/O than computations, 
many short CPU bursts
CPU-bound process – spends more time doing computations; few very 
long CPU bursts

Long-term scheduler strives for good process mix
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Operations on Processes

System must provide mechanisms for:
process creation,
process termination, 
and so on as detailed next
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Process Creation

Parent process create children processes, which, in turn 
create other processes, forming a tree of processes
Generally, process identified and managed via a process 
identifier (pid)
Resource sharing options

Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution options
Parent and children execute concurrently
Parent waits until children terminate
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Process Creation (Cont.)

Address space
Child duplicate of parent (has the same program as the 
parent)
Child has a program loaded into it

UNIX examples
fork() system call creates new process. The new process 
consists of a copy of the address space of the original 
process.
exec() system call used after a fork() to replace the 
process’ memory space with a new program

move itself off the ready queue until the termination of the child
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C Program Forking Separate Process

The only difference is 
that the value of pid for 
the child process is 
zero, while that for the 
parent is the actual pid 
of the child process.



1.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Process executes last statement and then asks the operating 
system to delete it using the exit() system call.

Returns  status data from child to parent (via wait())
Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes  using 
the abort() system call.  Some reasons for doing so:

Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not 
allow  a child to continue if its parent terminates
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Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes, 
including sharing data
Reasons for cooperating processes:

Information sharing (shared files)
Computation speedup (parallel subtasks)
Modularity (system function divided into separate processes)
Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

Shared memory
Message passing
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Communications Models 

(a) Message passing.  (b) shared memory. 
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Race Condition

counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}
Each process has critical section segment of code

Process may be changing common variables, updating 
table, writing file, etc
When one process in critical section, no other may be in its 
critical section

Critical section problem is to design protocol to solve this 
problem
Each process must ask permission to enter critical section in 
entry section, may follow critical section with exit section, 
then remainder section
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Critical Section

General structure of process Pi  
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3.  Bounded Waiting - A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its critical 
section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the n

processes
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Peterson’s Solution

Good algorithmic  description of solving the problem
Two process solution
Assume that the load and store machine-language 
instructions are atomic; that is, cannot be interrupted
The two processes share two variables:

int turn; 

Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical 
section
The flag array is used to indicate if a process is ready to enter 
the critical section. flag[i] = true implies that process Pi is 
ready!
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Algorithm for Process Pi

do { 
flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 
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Synchronization Hardware

Many systems provide hardware support for implementing the 
critical section code.
All solutions below based on idea of locking

Protecting critical regions via locks
Uniprocessors – could disable interrupts

Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions
 Atomic = non-interruptible

Either test memory word and set value
Or swap contents of two memory words
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test_and_set  Instruction 

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.
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compare_and_swap Instruction
Definition:

int compare_and_swap(int *value, int expected, int new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set  the variable “value”  the value of the passed parameter “new_value” 

but only if “value” ==“expected”. That is, the swap takes place only under 
this condition.
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Mutex Locks

� Previous solutions are complicated and generally inaccessible 
to application programmers

� OS designers build software tools to solve critical section 
problem

� Simplest is mutex lock
� Protect a critical section  by first acquire() a lock then 

release() the lock
� Boolean variable indicating if lock is available or not

� Calls to acquire() and release() must be atomic
� Usually implemented via hardware atomic instructions

� But this solution requires busy waiting
� This lock therefore called a spinlock
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acquire() and release()

acquire() {
while (!available) 

; /* busy wait */ 

available = false; 

} 

release() { 

available = true; 

} 

do { 

acquire lock

critical section

release lock 

remainder section 

} while (true); 
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Semaphore

Synchronization tool that provides more sophisticated ways (than Mutex locks)  
for process to synchronize their activities.
Semaphore S – integer variable
Can only be accessed via two indivisible (atomic) operations

wait() and signal()
 Originally called P() and V()

Definition of  the wait() operation
wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

Definition of  the signal() operation
signal(S) { 

S++;

}
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Semaphore Usage

Counting semaphore – integer value can range over an unrestricted 
domain
Binary semaphore – integer value can range only between 0 and 1

Same as a mutex lock
Can solve various synchronization problems
Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

Can implement a counting semaphore S as a binary semaphore
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Deadlock and Starvation
Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes
Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

Starvation – indefinite blocking  
A process may never be removed from the semaphore queue in which it is 
suspended

Priority Inversion – Scheduling problem when lower-priority process 
holds a lock needed by higher-priority process

Solved via priority-inheritance protocol
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Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization 
schemes

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem
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Bounded-Buffer Problem

n buffers, each can hold one item
Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

The structure of the producer process

do { 

...
/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...
/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...
/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...
/* consume the item in next consumed */ 

...
} while (true); 
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Readers-Writers Problem

A data set is shared among a number of concurrent processes
Readers – only read the data set; they do not perform any updates
Writers   – can both read and write

Problem – allow multiple readers to read at the same time
Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered  – all 
involve some form of priorities
Shared Data

Data set
Semaphore rw_mutex initialized to 1

Semaphore mutex initialized to 1

Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

The structure of a writer process

do {
wait(rw_mutex); 

...
/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)
The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...
/* reading is performed */ 

... 

wait(mutex);
read count--;
if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Dining-Philosophers Problem

Philosophers spend their lives alternating thinking and eating
Don’t interact with their neighbors, occasionally try to pick up 2 
chopsticks (one at a time) to eat from bowl

Need both to eat, then release both when done
In the case of 5 philosophers

Shared data 
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

What is the problem with this algorithm?
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Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling
Allow at most 4 philosophers to be sitting 
simultaneously at  the table.
Allow a philosopher to pick up  the forks only if both 
are available (picking must be done in a critical 
section.
Use an asymmetric solution  -- an odd-numbered  
philosopher picks  up first the left chopstick and then 
the right chopstick. Even-numbered  philosopher picks  
up first the right chopstick and then the left chopstick. 



1.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization
Abstract data type, internal variables only accessible by code within the 
procedure
Only one process may be active within the monitor at a time
But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}
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Condition Variables

condition x, y;

Two operations are allowed on a condition variable:
x.wait() – a process that invokes the operation is 
suspended until x.signal() 

x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on 
the variable
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Monitor with Condition Variables
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Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{ 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}
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Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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CPU Scheduling - Basic Concepts

Maximum CPU utilization 
obtained with multiprogramming
CPU–I/O Burst Cycle – Process 
execution consists of a cycle of 
CPU execution and I/O wait
CPU burst followed by I/O burst
CPU burst distribution is of main 
concern
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CPU Scheduler

Short-term scheduler selects from among the processes in 
ready queue, and allocates the CPU to one of them

Queue may be ordered in various ways
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive



1.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process 
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to 
restart that program

Dispatch latency – time it takes for the dispatcher to stop 
one process and start another running
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Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their execution per 
time unit
Turnaround time – amount of time to execute a particular 
process
Waiting time – amount of time a process has been waiting in the 
ready queue
Response time – amount of time it takes from when a request 
was submitted until the first response is produced, not output  (for 
time-sharing environment)
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Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time 
Min waiting time 
Min response time
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time:  (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027
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Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst
Use these lengths to schedule the process with the shortest 
time

SJF is optimal – gives minimum average waiting time for a given 
set of processes

The difficulty is knowing the length of the next CPU request
Could ask the user
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Determining Length of Next CPU Burst

Can only estimate the length – should be similar to the previous one
Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using 
exponential averaging

Commonly, α set to ½
Preemptive version called shortest-remaining-time-first

:Define  4.
10 ,  3.

burst  CPU next the for value predicted   2.
burst  CPU  of length  actual  1.
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Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority 
(smallest integer  highest priority)

Preemptive
Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time

Problem  Starvation – low priority processes may never execute

Solution  Aging – as time progresses increase the priority of the 
process
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Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue.
If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.
Timer interrupts every quantum to schedule next process
Performance

q large  FIFO
q small  q must be large with respect to context switch, 
otherwise overhead is too high
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Multilevel Queue

Ready queue is partitioned into separate queues, eg:
foreground (interactive)
background (batch)

Process permanently in a given queue
Each queue has its own scheduling algorithm:

foreground – RR
background – FCFS

Scheduling must be done between the queues:
Fixed priority scheduling; (i.e., serve all from foreground then 
from background).  Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time 
which it can schedule amongst its processes; i.e., 80% to 
foreground in RR
20% to background in FCFS 
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Multilevel Feedback Queue

A process can move between the various queues; aging can be 
implemented this way
Multilevel-feedback-queue scheduler defined by the following 
parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter 
when that process needs service
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Example of Multilevel Feedback Queue

Three queues: 
Q0 – RR with time quantum 8 
milliseconds
Q1 – RR time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is 
served FCFS
 When it gains CPU, job receives 8 

milliseconds
 If it does not finish in 8 

milliseconds, job is moved to 
queue Q1

At Q1 job is again served FCFS and 
receives 16 additional milliseconds
 If it still does not complete, it is 

preempted and moved to queue Q2
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Real-Time Scheduling Is Not Fair

Main goal of an RTOS scheduler is to meet task deadlines, instead of 
throughput, latency and response time, etc.

If you have five homework assignments and only one is due in half an hour, 
you work on that one first

Fairness does not help you meet deadlines
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Real-Time Scheduling Policies

Important Questions for real-time scheduling

What scheduler is guaranteed to meet all task deadlines for a given 
workload?
Given a scheduler, how do we know that it will work for a given 
workload?
Is there an “optimal” scheduler independent of workload?
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Timing parameters of a job Jj

Arrival time (aj) or release time (rj) is the time at which the job becomes 
ready for execution
Computation (execution) time (Cj) is the time necessary to the processor for 
executing the job without interruption.
Absolute deadline (dj) is the time at which the job should be completed.
Relative deadline (Dj) is the time length between the arrival time and the 
absolute deadline.
Start time (sj) is the time at which the job starts its execution.
Finishing time (fj) is the time at which the job finishes its execution.
Response time (Rj) is the time length at which the job finishes its execution 
after its arrival, which is fj - aj.
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Feasibility of Schedules and Schedulability

A schedule is feasible if all jobs can be completed according to a set 
of specified constraints.

A set of jobs is schedulable if there exists a feasible schedule for the 
set of jobs.

A scheduling algorithm is optimal if it always produces a feasible 
schedule when one exists (under any scheduling algorithm).
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Evaluating A Schedule
For a job Jj:
Lateness Lj: delay of job completion with respect to its deadline.

Lj = fj - dj

Tardiness Ej: the time that a job stays active after its deadline.

Ej = max{0, Lj}

Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed and 
still meet its deadline.

Xj = dj - aj - Cj
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Metrics of Scheduling Algorithms (for Jobs)

Given a set J of n jobs, the common metrics are to minimize: 
- Average response time:

- Makespan (total completion time):

- Total weighted response time:

- Maximum latency:

Number of late jobs:                             where miss(Jj) = 0 if fj <= dj, and 
miss(Jj) = 1 otherwise. 
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Hard/Soft Real-Time Systems
Hard Real-Time Systems

- If any hard deadline is ever missed, then the system is incorrect
- The tardiness for any job must be 0
- Examples: Nuclear power plant control, flight control

Soft Real-Time Systems
- A soft deadline may occasionally be missed
- Various definitions for “occasionally”

- minimize the number of tardy jobs, minimize the maximum lateness, etc.
- Examples: Telephone switches, multimedia applications

We mostly consider hard real-time systems in this lecture.
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An Example: Shortest-Job-First (SJF)

At any moment, the system executes the job with the shortest remaining 
time among the jobs in the ready queue.
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An Example: Earliest-Deadline-First (EDF)
At any moment, the system executes the job with the earliest absolute 
deadline among the jobs in the ready queue.
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Recurrent Task Models

When jobs (usually with the same computation requirement) are released 
recurrently, they can be modeled by a recurrent task 
Periodic Task ti:

- A job is released exactly and periodically by a period Ti

- A phase φi indicates when the first job is released
- A relative deadline Di for each job from task ti
- (φi, Ci , Ti, Di) is the specification of periodic task ti, where Ci is the worst-case 

execution time.
Sporadic Task ti:

- Ti is the minimal time between any two consecutive job releases
- A relative deadline Di for each job from task ti
- (Ci, Ti, Di) is the specification of sporadic task ti , where Ci is the worst-case 

execution time.
Aperiodic Task: Identical jobs released arbitrarily. 
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Examples of Recurrent Task Models
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Feasibility and Schedulability for Recurrent Tasks

A schedule is feasible if all the jobs of all tasks can be completed 
according to a set of specified constraints.

A set of tasks is schedulable if there exists a feasible schedule for 
the set of tasks.

A scheduling algorithm is optimal if it always produces a feasible 
schedule when one exists (under any scheduling algorithm).
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Static-Priority Scheduling

Different jobs of a task are assigned the same priority.
- πi is the priority of task ti.
- HPi is the subset of tasks with higher priority than ti.
- Note: we will assume that no two tasks have the same priority.

We will implicitly index tasks in decreasing priority order, i.e., ti has 
higher priority than tk if i < k.
Which strategy is better or the best?

- largest execution time first?
- shortest job first?
- least-utilization first?
- most importance first?
- least period first?
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Rate-Monotonic (RM) Scheduling

Priority Definition: A task with a smaller period has higher priority, in 
which ties are broken arbitrarily.

Example Schedule: t1 = (1, 6, 6), t2 = (2, 8, 8), t3 = (4, 12, 12). [(Ci, Ti, 
Di)]
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Deadline-Monotonic (DM) Scheduling

Priority Definition: A task with a smaller relative deadline has higher 
priority, in which ties are broken arbitrarily.

Example Schedule: t1 = (2, 8, 4), t2 = (1, 6, 6), t3 = (4, 12, 12). [(Ci, Ti, 
Di )]
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Optimality (or not) of RM and DM

Example Schedule: t1 = (2, 4, 4), t2 = (5, 10, 10)

The above system is schedulable.
No static-priority scheme is optimal for scheduling periodic tasks: 
However, a deadline will be missed, regardless of how we choose to 
(statically) prioritize t1 and t2.

Corollary: Neither RM nor DM is optimal
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Optimality Among Static-Priority Algorithms

Theorem: A system of T independent, preemptable, synchronous 
periodic tasks that have relative deadlines equal to their respective 
periods can be feasibly scheduled on one processor according to the 
RM algorithm whenever it can be feasibly scheduled according to any 
static priority algorithm.

Exercise: Complete the proof.

Note: When Di <= Ti for all tasks, DM can be shown to be an optimal 
static-priority algorithm using similar argument. Proof left as an 
exercise.
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Liu and Layland Bound

Theorem: [Liu and Layland] A set of n independent, preemptable 
periodic tasks with relative deadlines equal to their respective periods 
can be scheduled on a processor according to the RM algorithm if its 
total utilization U is at most n(21/n - 1). In other words, Ulub(RM, n) = 
n(21/n - 1)  >= 0.693.
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Utilization-Based Test for EDF Scheduling

Theorem: A task set T of independent, preemptable, periodic tasks 
with relative deadlines equal to their periods can be feasibly 
scheduled (under EDF) on one processor if and only if its total 
utilization U is at most one.
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Relative Deadlines Less than Periods

Theorem: A task set T of independent, preemptable, periodic tasks 
with relative deadlines equal to or less than their periods can be 
feasibly scheduled (under EDF) on one processor if:

Note: This theorem only gives sufficient condition.



1.100 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Comparison between RM and EDF (Implicit
Deadlines)

RM
Low run-time overhead: O(1)
with priority sorting in advance 
Optimal for static-priority
Schedulability test is NP-hard 
(even if the relative deadline = 
period)
Least upper bound: 0.693
In general, more preemption

EDF
• High run-time overhead: O(log 

n) with balanced binary tree
• Optimal for dynamic-priority
• Schedulability test is easy 

(when the relative deadline = 
period)

• Least upper bound: 1
• In general, less preemption
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Deadlocks

 Deadlock = condition where multiple 
threads/processes wait on each other

process A

printer->wait();
disk->wait();
do stuffs …

disk->signal();
printer->signal();

process B

disk->wait();
printer->wait();
do stuffs …
printer->signal();
disk->signal();

Binary semaphore: printer, disk. Both initialized to be 1. 
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Deadlocks - Terminology

 Deadlock:
 Can occur when several processes compete for finite 

number of resources simultaneously
 Deadlock prevention algorithms:

 Check resource requests & availability
 Deadlock detection:

 Finds instances of deadlock when processes stop 
making progress

 Tries to recover

 Note: Deadlock ≠ Starvation
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When Deadlock Occurs
All of below must hold:
1. Mutual exclusion:

 An instance of resource used by one process at a time
2. Hold and wait

 One process holds resource while waiting for another; 
other process holds that resource

3. No preemption
 Process can only release resource voluntarily
 No other process or OS can force thread to release 

resource
4. Circular wait

 Set of processes {t1, …, tn}: ti waits on ti+1, tn waits on 
t1
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Deadlock Detection:
Resource Allocation Graph

 Define graph with vertices:
 Resources = {r1, …, rm}
 Processes/threads = {t1, …, tn}

 Request edge from process to resource
ti → rj
 Process requested resource but not 

acquired it
 Assignment edge from resource to process 

rj → ti
 OS has allocated resource to process

 Deadlock detection
 No cycles → no deadlock
 Cycle → might be deadlock
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Deadlock Detection:
Multiple Instances of Resource

 What if there are multiple instances of a 
resource?
 Cycle → deadlock might exist
 If any instance held by process outside cycle, 

progress is possible when process releases 
resource
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Deadlock Detection

 Deadlock or not?
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Detecting & Recovering from 
Deadlock

 Single instance of resource
 Scan resource allocation graph for cycles & 

break them! 
 Detecting cycles takes O(n2) time

 DFS with back edge
 n = |T| + |R|

 When to detect:
 When request cannot be satisfied
 On regular schedule, e.g. every hour
 When CPU utilization drops below threshold
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Detecting & Recovering from 
Deadlock (cont’d)

 How to recover? - break cycles:
 Kill all processes in cycle
 Kill processes one at a time

 Force each to give up resources
 Preempt resources one at a time

 Roll back thread state to before acquiring resource
 Common in database transactions

 Multiple instances of resource
 No cycle → no deadlock
 Otherwise, check whether processes can proceed
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Deadlock Prevention

 Ensure at least one of necessary conditions 
doesn’t hold
 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait
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Deadlock Prevention
with Resource Reservation

 With future knowledge, we can prevent 
deadlocks:
 Processes provide advance information about 

maximum resources they may need during 
execution

 Resource-allocation state:
 Number of available & allocated resources, 

maximum demand of each process
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Deadlock Prevention
with Resource Reservation (cont’d)
 Main idea: grant resource to process if new state is safe

 Define sequence of processes {t1, …, tn} as safe:
 For each ti, the resources that ti can still request can be 

satisfied by currently available resources plus resources 
held by all tj, j < i

 Safe state = state in which there is safe sequence 
containing all processes

 If new state unsafe:
 Process waits, even if resource available

Guarantees no circular-wait condition
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Single-Instance Resources: Deadlock 
Avoidance via Claim Edges

 Add claim edges:
 Edge from process to resource that may be 

requested in future



13

Single-Instance Resources: Deadlock 
Avoidance via Claim Edges (cont’d)

 To determine whether to 
satisfy a request:
 convert claim edge to 

allocation edge
 No cycle: grant request
 Cycle: unsafe state; Deny 

allocation, convert claim edge 
to request edge, block process



Banker’s Algorithm

 Multiple instances
 Each process must a priori claim maximum use
 When a process requests a resource it may have to wait  
 When a process gets all its resources it must return 

them in a finite amount of time



Data Structures for the Banker’s Algorithm 

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at 
most k instances of resource type Rj

 Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently 
allocated k instances of Rj

 Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more 
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types. 



Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both: 
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3.  Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state



Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi.  If Requesti [j] = k then 
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, 
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3.  Otherwise Pi must wait, 
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state 
as follows:

Available = Available  – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state 
is restored
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Memory Management:
Terminology

 Segment: chunk of 
memory assigned to 
process

 Physical address: real 
address in memory

 Virtual address: 
address relative to start 
of process’s address 
space
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Multiprogramming Requirements

 Transparency
 No process aware memory is shared
 Process has no constraints on physical memory

 Safety
 Processes cannot corrupt each other or OS

 Efficiency
 Performance not degraded due to sharing
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Contiguous memory allocation

 Put OS in high memory
 Process starts at 0

 Max addr = memory 
size – OS size

 Load process by 
allocating contiguous 
segment for process

 Smallest addr = base, 
largest = limit
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Address Translation

 Hardware adds relocation register (base) to 
virtual address to get physical address

 Hardware compares address with limit 
register
 Test fails → trap
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Pros & Cons

 Advantages
 Simple, fast hardware

 Two special registers, add & compare

 Disadvantages
 Process limited to physical memory size
 Degree of multiprogramming limited

 All memory of active processes must fit in memory
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Fragmentation

 Fragmentation = % memory unavailable for 
allocation, but not in use

 External fragmentation:
 Large # of small holes s.t. even the total size satisfies a 

request; no contiguous chunk can be found
 Caused by repeated unloading & loading

 Internal fragmentation:
 Space inside process allocations

 Unavailable to other processes
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Compaction

 Can make space available by shuffling 
process space 
 Eliminate holes
 Place free memory together
 Cannot move a process if addresses are 

determined at compile or load time 
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Alternative: Paging

 Divide logical memory into 
fixed-sized pages (4K, 8K)

 Divide physical memory into 
fixed-sized frames
 Pages & frames same size
 OS manages pages

 Moves, removes, reallocates
 Disk space: blocks same size as 

frames 
 Pages copied to and from disk 

to frames

A
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Paging Advantages

 Most programs obey 
90/10 “rule”
 90% of time spent 

accessing 10% of 
memory

 Exploiting this rule:
 Only keep “live” parts 

of process in memory

A

B

A
B
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Paging Advantages

 “Hole-fitting problem” vanishes!
 Logical memory contiguous
 Physical memory not required to be

 Eliminates external fragmentation
 But not internal (why not?)

 But: Complicates address lookup...
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Paging Hardware

 Processes use virtual addresses
 Addresses start at 0 or other known address
 OS lays process down on pages

 MMU (memory-management unit):
 Hardware support for paging
 Translates virtual to physical addresses
 Uses page table to keep track of frame assigned 

to memory page



29

Paging Hardware: Diagram
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Paging Hardware: Intuition

 Paging: form of dynamic relocation
 Virtual address bound by paging hardware to physical 

address
 Page table: similar to a set of relocation registers
 Mapping – invisible to process

 OS maintains mapping
 H/W does translation

 Protection – provided by same mechanisms as in 
dynamic relocation
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Address Translation: Example

 Assume 1 byte 
addressing, each page 
contains 4 bytes: 
 Length of p, d?
 Given virtual 

address 0, 4, 10, 13, 
do virtual to 
physical translation

each entry uses 
1 byte
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Translation Lookaside Buffer (TLB)

 Small, fast-lookup hardware cache
 TLB sizes: 8 to 2048 entries
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TLB: Diagram

 v = valid bit: entry is up-to-date
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Effectiveness of TLB

 Processes exhibit locality of reference
 Temporal locality: processes tend to reference 

same items repeatedly
 Spatial locality: processes tend to reference 

items near each other (e.g., on same page)
 Locality in memory accesses →

locality in address translation
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Managing TLB:
Process Initialization & Execution

 Process arrives, needs k pages
 If k page frames free, allocate;

else free frames that are no longer needed
 OS:

 puts pages in frames
 puts frame numbers into page table
 marks all TLB entries as invalid (flush)
 starts process
 loads TLB entries as pages are accessed,

replaces entries when full
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Managing TLB:
Context Switches

 Extend Process Control Block (PCB) with:
 Page table
 Copy of TLB (optional)

 Context switch:
 Copy page table to PCB
 Copy TLB to PCB, Flush TLB (optional)
 Restore page table
 Restore TLB (optional)

 Use multilevel paging if tables too big (see text)
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Demand-Paging Diagram
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Key Policy Decisions

 Two key questions:
 When do we read page from disk?
 When do we write page to disk?
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Reading Pages

 Read on-demand:
 OS loads page on its first reference
 May force an eviction of page in RAM
 Pause while loading page = page fault

 Can also perform pre-paging:
 OS guesses which page will next be needed, and 

begins loading it
 Advantages? Disadvantages?

 Most systems just do demand paging
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Page Replacement

 Process is given a fixed memory space of n
pages

 Question:
 process requests a page 
 page is not in memory, all n pages are used
 which page should be evicted from memory?
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Metric: Effective Access Time

 Let p = probability of page fault  (0 ≤ p ≤ 1)
ma = memory access time

 Effective access time =
(1 – p) * ma + p * page fault service time
 Memory access = 200ns, page fault = 25ms:

effective access time = (1-p)*200 + 
p*25,000,000
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Evaluating Page Replacement 
Algorithms

 Average-case:
 Empirical studies – real application behavior

 Theory: competitive analysis
 Can’t do better than optimal
 How far (in terms of faults) is algorithm from 

optimal in worst-case?
 Competitive ratio

 If algorithm can’t do worse than 2x optimal,
it’s 2-competitive
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Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)
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MIN/OPT

 Invented by Belady (“MIN”), now known as 
“OPT”: optimal page replacement
 Evict page to be accessed furthest in the future

 Provably optimal policy
 Just one small problem...

 Requires predicting the future
 Useful point of comparison
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RANDOM

 Evict any page
 Works surprisingly well
 Theoretically: very good
 Not used in practice:

takes no advantage of locality
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LRU

 Evict page that has not been used in longest 
time (least-recently used)
 Approximation of MIN if recent past is good 

predictor of future
 A variant of LRU used in all real operating 

systems
 Competitive ratio: n, (n: # of page frames)

 Best possible for deterministic algs.
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FIFO

 First-in, first-out: evict oldest page
 Also has competitive ratio n

 But: performs miserably in practice!
 LRU takes advantage of locality
 FIFO does not

 Suffers from Belady’s anomaly:
 More memory can mean more paging!



48

FIFO & Belady’s Anomaly

 Request sequence
A B C D A B E A B C D E
 Q1: # of page faults when n=3?
 Q2: # of page faults when n=4?
 Q3: what are the results under LRU?
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FIFO & Belady’s Anomaly

• When n=3, 9 page faults
• When n=4, 10 page faults
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LRU: No Belady’s Anomaly

• When n=3, 10 page faults
• When n=4, 8 page faults
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Why no anomaly for LRU?

 “Stack” property:
 Pages in memory for memory size of n are also in 

memory for memory size of n+1
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Implementation of LRU Algorithm
Counter implementation

Every page entry has a counter; every time page is referenced 
through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to find 
smallest value
 Search through table needed

Stack implementation
Keep a stack of page numbers in a double link form:
Page referenced:
 move it to the top
 requires 6 pointers to be changed

But each update more expensive
No search for replacement

LRU and OPT are cases of stack algorithms that don’t have 
Belady’s Anomaly
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Use Of A Stack to Record Most Recent Page References
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LRU Approximation Algorithms
LRU needs special hardware and still slow
Reference bit

With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace any with reference bit = 0 (if one exists)
We do not know the order, however

Second-chance algorithm
Generally FIFO, plus hardware-provided reference bit
Clock replacement
If page to be replaced has 
 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm
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Allocation of Frames

Each process needs minimum number of frames 
Defined by the computer architecture

Maximum of course is total frames in the system
Two major allocation schemes

fixed allocation
priority allocation

Many variations
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Fixed Allocation
Equal allocation – For example, if there are 100 frames (after 
allocating frames for the OS) and 5 processes, give each process 
20 frames

Keep some as free frame buffer pool

Proportional allocation – Allocate according to the size of process
Dynamic as degree of multiprogramming, process sizes 
change

m
S
spa

m
sS

ps

i
ii

i

ii








 for allocation 

frames of number total 

 process of size 
m  64
s110
s2 127

a1 
10
137

 62  4

a2 
127
137

 62  57
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Priority Allocation

Use a proportional allocation scheme using priorities rather 
than size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower 
priority number
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Global vs. Local Allocation

Global replacement – process selects a replacement frame 
from the set of all frames; one process can take a frame from 
another

But then process execution time can vary greatly
But greater throughput so more common

Local replacement – each process selects from only its own 
set of allocated frames

More consistent per-process performance
But possibly underutilized memory
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Thrashing

If a process does not have “enough” pages, the page-fault rate is 
very high

Page fault to get page
Replace existing frame
But quickly need replaced frame back
This leads to:
 Low CPU utilization
 Operating system thinking that it needs to increase the 

degree of multiprogramming
 Another process added to the system

Thrashing  a process is busy swapping pages in and out
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Thrashing (Cont.)
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Demand Paging and Thrashing 
Why does demand paging work?
Locality model

A locality is a set of pages actively used together
Process migrates from one locality to another
Localities may overlap
Localities are defined by the program structure and its data 
structure

Why does thrashing occur?
 size of locality > total memory size

Limit effects by using local or priority page replacement
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Working-Set Model
  working-set window  a fixed number of page references 
Example:  10,000 instructions
WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

if  too small will not encompass entire locality
if  too large will encompass several localities
if  =   will encompass entire program

D =  WSSi  total demand frames 
Approximation of locality

if D > m  Thrashing

Policy if D > m, then suspend or swap out one of the processes 
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Page-Fault Frequency
More direct approach than WSS
Establish “acceptable” page-fault frequency (PFF) rate 
and use local replacement policy

If actual rate too low, process loses frame
If actual rate too high, process gains frame
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Working Sets and Page Fault Rates
n Direct relationship between working set of a process and its 

page-fault rate
n Working set changes over time
n Peaks and valleys over time
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Files: OS Abstraction

Files: another OS-provided abstraction over hardware resources

OS Abstraction Hardware Resource

Processes
Threads

CPU

Address space Memory

Files Disk
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File Concept
The file system consists of two distinct parts: 

A collection of files, each storing related data
A directory structure, which organizes and provides 
information about all the files in the system.

File: Contiguous logical address space, mapped by the OS 
onto physical devices.
Types: 

Data
 Numeric, character, binary

Program
Contents  (many types) is defined by file’s creator

text file, 
source file, 
executable file
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File Attributes
Name – only information kept in human-readable form
Identifier – unique tag (number) identifies file within file system
Type – needed for systems that support different types
Location – pointer to file location on the device (disk)
Size – current file size
Protection – controls who can do reading, writing, executing
Time, date, and user identification – information kept for 
creation time, last modification time, and last use time.

Useful for data for protection, security, and usage monitoring
Information kept in the directory structure (on disk), which 
consists of “inode” entries for each of the files in the system.
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File Operations

Create
Write – at write pointer location
Read – at read pointer location
Reposition within file - seek
Delete
Truncate
Open(Fi) – search the directory structure on disk for inode 
entry Fi, and move the content of the entry to memory
Close (Fi) – move the content of  inode entry Fi in memory to 
directory structure on disk.
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Access Methods

Information in the file is processed in order, one record 
after the other.
General structure

Operations:
read_next () – reads the next portion of the file and 
automatically advances a file pointer.
write_next () – append to the end of the file and 
advances to the end of the newly written material 
(the new end of file).
reset – back to the beginning of the file. 

Sequential Access (based on tape model)
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Access Methods

File is made up of fixed-length logical records that allow 
programs to read and write records rapidly in no particular 
order.
File is viewed as a numbered sequence of blocks or records. 
For example, can read block 14, then read block 53, and 
then write block 7. 
Operations:

read(n) – reads  relative block number n.
write(n) – writes  relative block number n.

Relative block numbers (to the beginning of the file) allow 
OS to decide where file should be placed

Direct Access (based on disk model)
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Other Access Methods

Can be built on top of the direct-access methods
Generally -- involve creation of an index for the file, containing 
pointers to the various blocks. 
Keep index in memory for fast determination of location of data 
to be operated on 
For example, a retail-price file might list the universal product 
codes (UPCs) for items, with the associated prices: 10-digit 
UPC + 6-digit price = a 16-byte record. If the disk has 1,024 
bytes per block, we can store 64 records per block. A file of 
120,000 records would occupy about 2,000 blocks (2 million 
bytes). By keeping the file sorted by UPC, we can define an 
index consisting of the first UPC in each block. This index 
would have 2,000 entries of 10 digits each, or 20,000 bytes, 
and thus could be kept in memory.
If too large, keep index (in memory) of the main index (on disk)
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A Typical File System Organization
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Directory Structure
The directory can be viewed as a symbol table that translates file 
names into their directory 
A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Directory entry
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Directory Organization

Efficiency – locating a file quickly
Naming – convenient to users

Two users can have same name for different files
The same file can have several different names

Grouping – logical grouping of files by properties (e.g., 
all Java programs, all games, …)

The directory is organized logically to obtain 
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Single-Level Directory

A single directory for all users

Naming problem: unique name rule is violated
Grouping problem
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Two-Level Directory

Separate directory for each user

Can have the same file name for different user
Efficient searching
User isolation: difficult for file sharing
No grouping capability
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Tree-Structured Directories
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Acyclic-Graph Directories

Have shared subdirectories and files
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General Graph Directory
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