
1.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Final Exam Review

1.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer System Structure

Computer system can be divided into four components:
Hardware – provides basic computing resources
 CPU, memory, I/O devices

Operating system
 Controls and coordinates use of hardware among various

applications and users
Application programs – define the ways in which the system
resources are used to solve the computing problems of the
users
Word processors, compilers, web browsers, database

systems, video games
Users
 People, machines, other computers

1.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Four Components of a Computer System

1.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Definition

OS is a resource allocator
Manages all resources
Decides between conflicting requests for efficient and
fair resource use

OS is a control program
Controls execution of programs to prevent errors and
improper use of the computer

1.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer System Organization

Computer-system operation
One or more CPUs, device controllers connect through common bus
providing access to shared memory
Concurrent execution of CPUs and devices competing for memory
cycles. A memory controller synchronizes access to the memory.

1.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Hierarchy

Storage systems organized in hierarchy
Speed
Cost
Volatility

Caching – copying information into faster storage system;
main memory can be viewed as a cache for secondary
storage
Device Driver for each device controller to manage I/O

Provides uniform interface between controller and
kernel

1.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage-Device Hierarchy

1.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Caching

Important principle, performed at many levels in a computer
(in hardware, operating system, software)
Information in use copied from slower to faster storage
temporarily
Faster storage (cache) checked first to determine if
information is there

If it is, information used directly from the cache (fast)
If not, data copied to cache and used there

Cache smaller than storage being cached
Cache management important design problem
Cache size and replacement policy

1.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

Multiprogramming (Batch system) needed for efficiency
Single user cannot keep CPU and I/O devices busy at all times
Multiprogramming organizes jobs (code and data) so CPU always has one
to execute
A subset of total jobs in system is kept in memory
One job selected and run via job scheduling
When it has to wait (for I/O for example), OS switches to another job

Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating
interactive computing

Response time should be < 1 second
Each user has at least one program executing in memory process
If several jobs ready to run at the same time CPU scheduling
If processes don’t fit in memory, swapping moves them in and out to run
Virtual memory allows execution of processes not completely in memory

1.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating-System Operations (cont.)

Dual-mode operation allows OS to protect itself and other system
components

User mode and kernel mode
Mode bit provided by hardware (e.g., CS register in CPU)
 Provides ability to distinguish when system is running user code or

kernel code
 Some instructions designated as privileged, only executable in kernel

mode
 System call changes mode to kernel, return from call resets it to user

1.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

Operating systems provide an environment for execution of programs
and services to programs and users
One set of operating-system services provides functions that are
helpful to the user:

User interface - Almost all operating systems have a user
interface (UI).
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)
I/O operations - A running program may require I/O, which may
involve a file or an I/O device

1.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

One set of operating-system services provides functions that are helpful to
the user (Cont.):

File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.
Communications – Processes may exchange information, on the same
computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
Error detection – OS needs to be constantly aware of possible errors
 May occur in the CPU and memory hardware, in I/O devices, in user

program
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

1.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.
Accounting - To keep track of which users use how much and what
kinds of computer resources
Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access
attempts

1.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

1.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)
Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use
Three most common APIs are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

1.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

Typically, a number associated with each system call
System-call interface maintains a table indexed according to
these numbers

The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values
The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a
result call
Most details of OS interface hidden from programmer by API
 Managed by run-time support library (set of functions built

into libraries included with compiler)

1.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

1.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary widely

Start the design by defining goals and specifications

Highest level: affected by choice of hardware, type of system

The requirements can be divided into User and System goals
User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast
System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

1.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

Important principle to separate
Policy: What will be done?
Mechanism: How to do it?
Mechanisms determine how to do something, policies decide
what will be done
The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)
Specifying and designing an OS is highly creative task of
software engineering

1.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

General-purpose OS is very large program
Various ways to structure ones

Simple structure – MS-DOS
More complex -- UNIX
Layered – an abstrcation
Microkernel -Mach

1.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

An operating system executes a variety of programs:
Batch system – jobs
Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably
Process – a program in execution; process execution must
progress in sequential fashion
Multiple parts

The program code, also called text section
Current activity including program counter, processor
registers
Stack containing temporary data
 Function parameters, return addresses, local variables

Data section containing global variables
Heap containing memory dynamically allocated during run time

1.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

As a process executes, it changes state
new: The process is being created
running: Instructions are being executed
waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution

1.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

1.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)

Process state – running, waiting, etc
Program counter – location of
instruction to next execute
CPU registers – contents of all process-
centric registers
CPU scheduling information- priorities,
scheduling queue pointers
Memory-management information –
memory allocated to the process
Accounting information – CPU used,
clock time elapsed since start, time
limits
I/O status information – I/O devices
allocated to process, list of open files

1.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

1.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

Maximize CPU use, quickly switch processes onto CPU for
time sharing
Process scheduler selects among available processes for
next execution on CPU
Maintains scheduling queues of processes

Job queue – set of all processes in the system
Ready queue – set of all processes residing in main
memory, ready and waiting to execute
Device queues – set of processes waiting for an I/O device
Processes migrate among the various queues

1.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

1.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

1.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU

Sometimes the only scheduler in a system
Short-term scheduler is invoked frequently (milliseconds) (must be
fast)

Long-term scheduler (or job scheduler) – selects which processes should
be brought into the ready queue

Long-term scheduler is invoked infrequently (seconds, minutes)
(may be slow)
The long-term scheduler controls the degree of multiprogramming

Processes can be described as either:
I/O-bound process – spends more time doing I/O than computations,
many short CPU bursts
CPU-bound process – spends more time doing computations; few very
long CPU bursts

Long-term scheduler strives for good process mix

1.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

System must provide mechanisms for:
process creation,
process termination,
and so on as detailed next

1.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

Parent process create children processes, which, in turn
create other processes, forming a tree of processes
Generally, process identified and managed via a process
identifier (pid)
Resource sharing options

Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution options
Parent and children execute concurrently
Parent waits until children terminate

1.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

Address space
Child duplicate of parent (has the same program as the
parent)
Child has a program loaded into it

UNIX examples
fork() system call creates new process. The new process
consists of a copy of the address space of the original
process.
exec() system call used after a fork() to replace the
process’ memory space with a new program

move itself off the ready queue until the termination of the child

1.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

The only difference is
that the value of pid for
the child process is
zero, while that for the
parent is the actual pid
of the child process.

1.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

Process executes last statement and then asks the operating
system to delete it using the exit() system call.

Returns status data from child to parent (via wait())
Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

1.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

Processes within a system may be independent or cooperating
Cooperating process can affect or be affected by other processes,
including sharing data
Reasons for cooperating processes:

Information sharing (shared files)
Computation speedup (parallel subtasks)
Modularity (system function divided into separate processes)
Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

Shared memory
Message passing

1.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

1.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

1.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

Consider system of n processes {p0, p1, … pn-1}
Each process has critical section segment of code

Process may be changing common variables, updating
table, writing file, etc
When one process in critical section, no other may be in its
critical section

Critical section problem is to design protocol to solve this
problem
Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

1.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

General structure of process Pi

1.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

1.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

Good algorithmic description of solving the problem
Two process solution
Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted
The two processes share two variables:

int turn;

Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical
section
The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

1.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {
flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

1.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

Many systems provide hardware support for implementing the
critical section code.
All solutions below based on idea of locking

Protecting critical regions via locks
Uniprocessors – could disable interrupts

Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions
 Atomic = non-interruptible

Either test memory word and set value
Or swap contents of two memory words

1.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:
boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

1.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction
Definition:

int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable “value” the value of the passed parameter “new_value”

but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

1.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

� Previous solutions are complicated and generally inaccessible
to application programmers

� OS designers build software tools to solve critical section
problem

� Simplest is mutex lock
� Protect a critical section by first acquire() a lock then

release() the lock
� Boolean variable indicating if lock is available or not

� Calls to acquire() and release() must be atomic
� Usually implemented via hardware atomic instructions

� But this solution requires busy waiting
� This lock therefore called a spinlock

1.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

acquire() {
while (!available)

; /* busy wait */

available = false;

}

release() {

available = true;

}

do {

acquire lock

critical section

release lock

remainder section

} while (true);

1.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.
Semaphore S – integer variable
Can only be accessed via two indivisible (atomic) operations

wait() and signal()
 Originally called P() and V()

Definition of the wait() operation
wait(S) {

while (S <= 0)

; // busy wait

S--;

}

Definition of the signal() operation
signal(S) {

S++;

}

1.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

Counting semaphore – integer value can range over an unrestricted
domain
Binary semaphore – integer value can range only between 0 and 1

Same as a mutex lock
Can solve various synchronization problems
Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

Can implement a counting semaphore S as a binary semaphore

1.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation
Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes
Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

Starvation – indefinite blocking
A process may never be removed from the semaphore queue in which it is
suspended

Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

Solved via priority-inheritance protocol

1.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization
schemes

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem

1.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

n buffers, each can hold one item
Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value n

1.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

The structure of the producer process

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

1.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

1.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

A data set is shared among a number of concurrent processes
Readers – only read the data set; they do not perform any updates
Writers – can both read and write

Problem – allow multiple readers to read at the same time
Only one single writer can access the shared data at the same time

Several variations of how readers and writers are considered – all
involve some form of priorities
Shared Data

Data set
Semaphore rw_mutex initialized to 1

Semaphore mutex initialized to 1

Integer read_count initialized to 0

1.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

} while (true);

1.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)
The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

1.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

Philosophers spend their lives alternating thinking and eating
Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

Need both to eat, then release both when done
In the case of 5 philosophers

Shared data
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

1.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

What is the problem with this algorithm?

1.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling
Allow at most 4 philosophers to be sitting
simultaneously at the table.
Allow a philosopher to pick up the forks only if both
are available (picking must be done in a critical
section.
Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.

1.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

A high-level abstraction that provides a convenient and effective
mechanism for process synchronization
Abstract data type, internal variables only accessible by code within the
procedure
Only one process may be active within the monitor at a time
But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

1.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

condition x, y;

Two operations are allowed on a condition variable:
x.wait() – a process that invokes the operation is
suspended until x.signal()

x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on
the variable

1.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

1.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

1.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

1.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

1.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduling - Basic Concepts

Maximum CPU utilization
obtained with multiprogramming
CPU–I/O Burst Cycle – Process
execution consists of a cycle of
CPU execution and I/O wait
CPU burst followed by I/O burst
CPU burst distribution is of main
concern

1.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

Short-term scheduler selects from among the processes in
ready queue, and allocates the CPU to one of them

Queue may be ordered in various ways
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

1.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to
restart that program

Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

1.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their execution per
time unit
Turnaround time – amount of time to execute a particular
process
Waiting time – amount of time a process has been waiting in the
ready queue
Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output (for
time-sharing environment)

1.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

1.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

1.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst
Use these lengths to schedule the process with the shortest
time

SJF is optimal – gives minimum average waiting time for a given
set of processes

The difficulty is knowing the length of the next CPU request
Could ask the user

1.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

Can only estimate the length – should be similar to the previous one
Then pick process with shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using
exponential averaging

Commonly, α set to ½
Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

 1n

th
n nt

 .11 nnn t

1.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
(smallest integer highest priority)

Preemptive
Nonpreemptive

SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

Problem Starvation – low priority processes may never execute

Solution Aging – as time progresses increase the priority of the
process

1.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.
If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.
Timer interrupts every quantum to schedule next process
Performance

q large FIFO
q small q must be large with respect to context switch,
otherwise overhead is too high

1.77 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

Ready queue is partitioned into separate queues, eg:
foreground (interactive)
background (batch)

Process permanently in a given queue
Each queue has its own scheduling algorithm:

foreground – RR
background – FCFS

Scheduling must be done between the queues:
Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR
20% to background in FCFS

1.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

A process can move between the various queues; aging can be
implemented this way
Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter
when that process needs service

1.79 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

Three queues:
Q0 – RR with time quantum 8
milliseconds
Q1 – RR time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is
served FCFS
 When it gains CPU, job receives 8

milliseconds
 If it does not finish in 8

milliseconds, job is moved to
queue Q1

At Q1 job is again served FCFS and
receives 16 additional milliseconds
 If it still does not complete, it is

preempted and moved to queue Q2

1.80 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time Scheduling Is Not Fair

Main goal of an RTOS scheduler is to meet task deadlines, instead of
throughput, latency and response time, etc.

If you have five homework assignments and only one is due in half an hour,
you work on that one first

Fairness does not help you meet deadlines

1.81 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time Scheduling Policies

Important Questions for real-time scheduling

What scheduler is guaranteed to meet all task deadlines for a given
workload?
Given a scheduler, how do we know that it will work for a given
workload?
Is there an “optimal” scheduler independent of workload?

1.82 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Timing parameters of a job Jj

Arrival time (aj) or release time (rj) is the time at which the job becomes
ready for execution
Computation (execution) time (Cj) is the time necessary to the processor for
executing the job without interruption.
Absolute deadline (dj) is the time at which the job should be completed.
Relative deadline (Dj) is the time length between the arrival time and the
absolute deadline.
Start time (sj) is the time at which the job starts its execution.
Finishing time (fj) is the time at which the job finishes its execution.
Response time (Rj) is the time length at which the job finishes its execution
after its arrival, which is fj - aj.

1.83 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Feasibility of Schedules and Schedulability

A schedule is feasible if all jobs can be completed according to a set
of specified constraints.

A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.

A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

1.84 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Evaluating A Schedule
For a job Jj:
Lateness Lj: delay of job completion with respect to its deadline.

Lj = fj - dj

Tardiness Ej: the time that a job stays active after its deadline.

Ej = max{0, Lj}

Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed and
still meet its deadline.

Xj = dj - aj - Cj

1.85 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Metrics of Scheduling Algorithms (for Jobs)

Given a set J of n jobs, the common metrics are to minimize:
- Average response time:

- Makespan (total completion time):

- Total weighted response time:

- Maximum latency:

Number of late jobs: where miss(Jj) = 0 if fj <= dj, and
miss(Jj) = 1 otherwise.

1.86 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hard/Soft Real-Time Systems
Hard Real-Time Systems

- If any hard deadline is ever missed, then the system is incorrect
- The tardiness for any job must be 0
- Examples: Nuclear power plant control, flight control

Soft Real-Time Systems
- A soft deadline may occasionally be missed
- Various definitions for “occasionally”

- minimize the number of tardy jobs, minimize the maximum lateness, etc.
- Examples: Telephone switches, multimedia applications

We mostly consider hard real-time systems in this lecture.

1.87 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

An Example: Shortest-Job-First (SJF)

At any moment, the system executes the job with the shortest remaining
time among the jobs in the ready queue.

1.88 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

An Example: Earliest-Deadline-First (EDF)
At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

1.89 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recurrent Task Models

When jobs (usually with the same computation requirement) are released
recurrently, they can be modeled by a recurrent task
Periodic Task ti:

- A job is released exactly and periodically by a period Ti

- A phase φi indicates when the first job is released
- A relative deadline Di for each job from task ti
- (φi, Ci , Ti, Di) is the specification of periodic task ti, where Ci is the worst-case

execution time.
Sporadic Task ti:

- Ti is the minimal time between any two consecutive job releases
- A relative deadline Di for each job from task ti
- (Ci, Ti, Di) is the specification of sporadic task ti , where Ci is the worst-case

execution time.
Aperiodic Task: Identical jobs released arbitrarily.

1.90 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Recurrent Task Models

1.91 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Feasibility and Schedulability for Recurrent Tasks

A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.

A set of tasks is schedulable if there exists a feasible schedule for
the set of tasks.

A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

1.92 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Static-Priority Scheduling

Different jobs of a task are assigned the same priority.
- πi is the priority of task ti.
- HPi is the subset of tasks with higher priority than ti.
- Note: we will assume that no two tasks have the same priority.

We will implicitly index tasks in decreasing priority order, i.e., ti has
higher priority than tk if i < k.
Which strategy is better or the best?

- largest execution time first?
- shortest job first?
- least-utilization first?
- most importance first?
- least period first?

1.93 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate-Monotonic (RM) Scheduling

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

Example Schedule: t1 = (1, 6, 6), t2 = (2, 8, 8), t3 = (4, 12, 12). [(Ci, Ti,
Di)]

1.94 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadline-Monotonic (DM) Scheduling

Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

Example Schedule: t1 = (2, 8, 4), t2 = (1, 6, 6), t3 = (4, 12, 12). [(Ci, Ti,
Di)]

1.95 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimality (or not) of RM and DM

Example Schedule: t1 = (2, 4, 4), t2 = (5, 10, 10)

The above system is schedulable.
No static-priority scheme is optimal for scheduling periodic tasks:
However, a deadline will be missed, regardless of how we choose to
(statically) prioritize t1 and t2.

Corollary: Neither RM nor DM is optimal

1.96 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimality Among Static-Priority Algorithms

Theorem: A system of T independent, preemptable, synchronous
periodic tasks that have relative deadlines equal to their respective
periods can be feasibly scheduled on one processor according to the
RM algorithm whenever it can be feasibly scheduled according to any
static priority algorithm.

Exercise: Complete the proof.

Note: When Di <= Ti for all tasks, DM can be shown to be an optimal
static-priority algorithm using similar argument. Proof left as an
exercise.

1.97 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Liu and Layland Bound

Theorem: [Liu and Layland] A set of n independent, preemptable
periodic tasks with relative deadlines equal to their respective periods
can be scheduled on a processor according to the RM algorithm if its
total utilization U is at most n(21/n - 1). In other words, Ulub(RM, n) =
n(21/n - 1) >= 0.693.

1.98 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Utilization-Based Test for EDF Scheduling

Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to their periods can be feasibly
scheduled (under EDF) on one processor if and only if its total
utilization U is at most one.

1.99 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Relative Deadlines Less than Periods

Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to or less than their periods can be
feasibly scheduled (under EDF) on one processor if:

Note: This theorem only gives sufficient condition.

1.100 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Comparison between RM and EDF (Implicit
Deadlines)

RM
Low run-time overhead: O(1)
with priority sorting in advance
Optimal for static-priority
Schedulability test is NP-hard
(even if the relative deadline =
period)
Least upper bound: 0.693
In general, more preemption

EDF
• High run-time overhead: O(log

n) with balanced binary tree
• Optimal for dynamic-priority
• Schedulability test is easy

(when the relative deadline =
period)

• Least upper bound: 1
• In general, less preemption

1

Deadlocks

 Deadlock = condition where multiple
threads/processes wait on each other

process A

printer->wait();
disk->wait();
do stuffs …

disk->signal();
printer->signal();

process B

disk->wait();
printer->wait();
do stuffs …
printer->signal();
disk->signal();

Binary semaphore: printer, disk. Both initialized to be 1.

2

Deadlocks - Terminology

 Deadlock:
 Can occur when several processes compete for finite

number of resources simultaneously
 Deadlock prevention algorithms:

 Check resource requests & availability
 Deadlock detection:

 Finds instances of deadlock when processes stop
making progress

 Tries to recover

 Note: Deadlock ≠ Starvation

3

When Deadlock Occurs
All of below must hold:
1. Mutual exclusion:

 An instance of resource used by one process at a time
2. Hold and wait

 One process holds resource while waiting for another;
other process holds that resource

3. No preemption
 Process can only release resource voluntarily
 No other process or OS can force thread to release

resource
4. Circular wait

 Set of processes {t1, …, tn}: ti waits on ti+1, tn waits on
t1

4

Deadlock Detection:
Resource Allocation Graph

 Define graph with vertices:
 Resources = {r1, …, rm}
 Processes/threads = {t1, …, tn}

 Request edge from process to resource
ti → rj
 Process requested resource but not

acquired it
 Assignment edge from resource to process

rj → ti
 OS has allocated resource to process

 Deadlock detection
 No cycles → no deadlock
 Cycle → might be deadlock

5

Deadlock Detection:
Multiple Instances of Resource

 What if there are multiple instances of a
resource?
 Cycle → deadlock might exist
 If any instance held by process outside cycle,

progress is possible when process releases
resource

6

Deadlock Detection

 Deadlock or not?

7

Detecting & Recovering from
Deadlock

 Single instance of resource
 Scan resource allocation graph for cycles &

break them!
 Detecting cycles takes O(n2) time

 DFS with back edge
 n = |T| + |R|

 When to detect:
 When request cannot be satisfied
 On regular schedule, e.g. every hour
 When CPU utilization drops below threshold

8

Detecting & Recovering from
Deadlock (cont’d)

 How to recover? - break cycles:
 Kill all processes in cycle
 Kill processes one at a time

 Force each to give up resources
 Preempt resources one at a time

 Roll back thread state to before acquiring resource
 Common in database transactions

 Multiple instances of resource
 No cycle → no deadlock
 Otherwise, check whether processes can proceed

9

Deadlock Prevention

 Ensure at least one of necessary conditions
doesn’t hold
 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

10

Deadlock Prevention
with Resource Reservation

 With future knowledge, we can prevent
deadlocks:
 Processes provide advance information about

maximum resources they may need during
execution

 Resource-allocation state:
 Number of available & allocated resources,

maximum demand of each process

11

Deadlock Prevention
with Resource Reservation (cont’d)
 Main idea: grant resource to process if new state is safe

 Define sequence of processes {t1, …, tn} as safe:
 For each ti, the resources that ti can still request can be

satisfied by currently available resources plus resources
held by all tj, j < i

 Safe state = state in which there is safe sequence
containing all processes

 If new state unsafe:
 Process waits, even if resource available

Guarantees no circular-wait condition

12

Single-Instance Resources: Deadlock
Avoidance via Claim Edges

 Add claim edges:
 Edge from process to resource that may be

requested in future

13

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

 To determine whether to
satisfy a request:
 convert claim edge to

allocation edge
 No cycle: grant request
 Cycle: unsafe state; Deny

allocation, convert claim edge
to request edge, block process

Banker’s Algorithm

 Multiple instances
 Each process must a priori claim maximum use
 When a process requests a resource it may have to wait
 When a process gets all its resources it must return

them in a finite amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state
is restored

18

Memory Management:
Terminology

 Segment: chunk of
memory assigned to
process

 Physical address: real
address in memory

 Virtual address:
address relative to start
of process’s address
space

19

Multiprogramming Requirements

 Transparency
 No process aware memory is shared
 Process has no constraints on physical memory

 Safety
 Processes cannot corrupt each other or OS

 Efficiency
 Performance not degraded due to sharing

20

Contiguous memory allocation

 Put OS in high memory
 Process starts at 0

 Max addr = memory
size – OS size

 Load process by
allocating contiguous
segment for process

 Smallest addr = base,
largest = limit

21

Address Translation

 Hardware adds relocation register (base) to
virtual address to get physical address

 Hardware compares address with limit
register
 Test fails → trap

22

Pros & Cons

 Advantages
 Simple, fast hardware

 Two special registers, add & compare

 Disadvantages
 Process limited to physical memory size
 Degree of multiprogramming limited

 All memory of active processes must fit in memory

23

Fragmentation

 Fragmentation = % memory unavailable for
allocation, but not in use

 External fragmentation:
 Large # of small holes s.t. even the total size satisfies a

request; no contiguous chunk can be found
 Caused by repeated unloading & loading

 Internal fragmentation:
 Space inside process allocations

 Unavailable to other processes

24

Compaction

 Can make space available by shuffling
process space
 Eliminate holes
 Place free memory together
 Cannot move a process if addresses are

determined at compile or load time

25

Alternative: Paging

 Divide logical memory into
fixed-sized pages (4K, 8K)

 Divide physical memory into
fixed-sized frames
 Pages & frames same size
 OS manages pages

 Moves, removes, reallocates
 Disk space: blocks same size as

frames
 Pages copied to and from disk

to frames

A

26

Paging Advantages

 Most programs obey
90/10 “rule”
 90% of time spent

accessing 10% of
memory

 Exploiting this rule:
 Only keep “live” parts

of process in memory

A

B

A
B

27

Paging Advantages

 “Hole-fitting problem” vanishes!
 Logical memory contiguous
 Physical memory not required to be

 Eliminates external fragmentation
 But not internal (why not?)

 But: Complicates address lookup...

28

Paging Hardware

 Processes use virtual addresses
 Addresses start at 0 or other known address
 OS lays process down on pages

 MMU (memory-management unit):
 Hardware support for paging
 Translates virtual to physical addresses
 Uses page table to keep track of frame assigned

to memory page

29

Paging Hardware: Diagram

30

Paging Hardware: Intuition

 Paging: form of dynamic relocation
 Virtual address bound by paging hardware to physical

address
 Page table: similar to a set of relocation registers
 Mapping – invisible to process

 OS maintains mapping
 H/W does translation

 Protection – provided by same mechanisms as in
dynamic relocation

31

Address Translation: Example

 Assume 1 byte
addressing, each page
contains 4 bytes:
 Length of p, d?
 Given virtual

address 0, 4, 10, 13,
do virtual to
physical translation

each entry uses
1 byte

32

Translation Lookaside Buffer (TLB)

 Small, fast-lookup hardware cache
 TLB sizes: 8 to 2048 entries

33

TLB: Diagram

 v = valid bit: entry is up-to-date

34

Effectiveness of TLB

 Processes exhibit locality of reference
 Temporal locality: processes tend to reference

same items repeatedly
 Spatial locality: processes tend to reference

items near each other (e.g., on same page)
 Locality in memory accesses →

locality in address translation

35

Managing TLB:
Process Initialization & Execution

 Process arrives, needs k pages
 If k page frames free, allocate;

else free frames that are no longer needed
 OS:

 puts pages in frames
 puts frame numbers into page table
 marks all TLB entries as invalid (flush)
 starts process
 loads TLB entries as pages are accessed,

replaces entries when full

36

Managing TLB:
Context Switches

 Extend Process Control Block (PCB) with:
 Page table
 Copy of TLB (optional)

 Context switch:
 Copy page table to PCB
 Copy TLB to PCB, Flush TLB (optional)
 Restore page table
 Restore TLB (optional)

 Use multilevel paging if tables too big (see text)

37

Demand-Paging Diagram

38

Key Policy Decisions

 Two key questions:
 When do we read page from disk?
 When do we write page to disk?

39

Reading Pages

 Read on-demand:
 OS loads page on its first reference
 May force an eviction of page in RAM
 Pause while loading page = page fault

 Can also perform pre-paging:
 OS guesses which page will next be needed, and

begins loading it
 Advantages? Disadvantages?

 Most systems just do demand paging

40

Page Replacement

 Process is given a fixed memory space of n
pages

 Question:
 process requests a page
 page is not in memory, all n pages are used
 which page should be evicted from memory?

41

Metric: Effective Access Time

 Let p = probability of page fault (0 ≤ p ≤ 1)
ma = memory access time

 Effective access time =
(1 – p) * ma + p * page fault service time
 Memory access = 200ns, page fault = 25ms:

effective access time = (1-p)*200 +
p*25,000,000

42

Evaluating Page Replacement
Algorithms

 Average-case:
 Empirical studies – real application behavior

 Theory: competitive analysis
 Can’t do better than optimal
 How far (in terms of faults) is algorithm from

optimal in worst-case?
 Competitive ratio

 If algorithm can’t do worse than 2x optimal,
it’s 2-competitive

43

Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)

44

MIN/OPT

 Invented by Belady (“MIN”), now known as
“OPT”: optimal page replacement
 Evict page to be accessed furthest in the future

 Provably optimal policy
 Just one small problem...

 Requires predicting the future
 Useful point of comparison

45

RANDOM

 Evict any page
 Works surprisingly well
 Theoretically: very good
 Not used in practice:

takes no advantage of locality

46

LRU

 Evict page that has not been used in longest
time (least-recently used)
 Approximation of MIN if recent past is good

predictor of future
 A variant of LRU used in all real operating

systems
 Competitive ratio: n, (n: # of page frames)

 Best possible for deterministic algs.

47

FIFO

 First-in, first-out: evict oldest page
 Also has competitive ratio n

 But: performs miserably in practice!
 LRU takes advantage of locality
 FIFO does not

 Suffers from Belady’s anomaly:
 More memory can mean more paging!

48

FIFO & Belady’s Anomaly

 Request sequence
A B C D A B E A B C D E
 Q1: # of page faults when n=3?
 Q2: # of page faults when n=4?
 Q3: what are the results under LRU?

49

FIFO & Belady’s Anomaly

• When n=3, 9 page faults
• When n=4, 10 page faults

50

LRU: No Belady’s Anomaly

• When n=3, 10 page faults
• When n=4, 8 page faults

51

Why no anomaly for LRU?

 “Stack” property:
 Pages in memory for memory size of n are also in

memory for memory size of n+1

9.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation of LRU Algorithm
Counter implementation

Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to find
smallest value
 Search through table needed

Stack implementation
Keep a stack of page numbers in a double link form:
Page referenced:
 move it to the top
 requires 6 pointers to be changed

But each update more expensive
No search for replacement

LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms
LRU needs special hardware and still slow
Reference bit

With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace any with reference bit = 0 (if one exists)
We do not know the order, however

Second-chance algorithm
Generally FIFO, plus hardware-provided reference bit
Clock replacement
If page to be replaced has
 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation of Frames

Each process needs minimum number of frames
Defined by the computer architecture

Maximum of course is total frames in the system
Two major allocation schemes

fixed allocation
priority allocation

Many variations

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Allocation
Equal allocation – For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames

Keep some as free frame buffer pool

Proportional allocation – Allocate according to the size of process
Dynamic as degree of multiprogramming, process sizes
change

m
S
spa

m
sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size
m 64
s110
s2 127

a1
10
137

 62 4

a2
127
137

 62 57

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Allocation

Use a proportional allocation scheme using priorities rather
than size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower
priority number

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Global vs. Local Allocation

Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another

But then process execution time can vary greatly
But greater throughput so more common

Local replacement – each process selects from only its own
set of allocated frames

More consistent per-process performance
But possibly underutilized memory

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

If a process does not have “enough” pages, the page-fault rate is
very high

Page fault to get page
Replace existing frame
But quickly need replaced frame back
This leads to:
 Low CPU utilization
 Operating system thinking that it needs to increase the

degree of multiprogramming
 Another process added to the system

Thrashing a process is busy swapping pages in and out

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing (Cont.)

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging and Thrashing
Why does demand paging work?
Locality model

A locality is a set of pages actively used together
Process migrates from one locality to another
Localities may overlap
Localities are defined by the program structure and its data
structure

Why does thrashing occur?
 size of locality > total memory size

Limit effects by using local or priority page replacement

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working-Set Model
 working-set window a fixed number of page references
Example: 10,000 instructions
WSSi (working set of Process Pi) =
total number of pages referenced in the most recent (varies in time)

if too small will not encompass entire locality
if too large will encompass several localities
if = will encompass entire program

D = WSSi total demand frames
Approximation of locality

if D > m Thrashing

Policy if D > m, then suspend or swap out one of the processes

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Fault Frequency
More direct approach than WSS
Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

If actual rate too low, process loses frame
If actual rate too high, process gains frame

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
n Direct relationship between working set of a process and its

page-fault rate
n Working set changes over time
n Peaks and valleys over time

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition 15

Files: OS Abstraction

Files: another OS-provided abstraction over hardware resources

OS Abstraction Hardware Resource

Processes
Threads

CPU

Address space Memory

Files Disk

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Concept
The file system consists of two distinct parts:

A collection of files, each storing related data
A directory structure, which organizes and provides
information about all the files in the system.

File: Contiguous logical address space, mapped by the OS
onto physical devices.
Types:

Data
 Numeric, character, binary

Program
Contents (many types) is defined by file’s creator

text file,
source file,
executable file

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Attributes
Name – only information kept in human-readable form
Identifier – unique tag (number) identifies file within file system
Type – needed for systems that support different types
Location – pointer to file location on the device (disk)
Size – current file size
Protection – controls who can do reading, writing, executing
Time, date, and user identification – information kept for
creation time, last modification time, and last use time.

Useful for data for protection, security, and usage monitoring
Information kept in the directory structure (on disk), which
consists of “inode” entries for each of the files in the system.

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Operations

Create
Write – at write pointer location
Read – at read pointer location
Reposition within file - seek
Delete
Truncate
Open(Fi) – search the directory structure on disk for inode
entry Fi, and move the content of the entry to memory
Close (Fi) – move the content of inode entry Fi in memory to
directory structure on disk.

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

Information in the file is processed in order, one record
after the other.
General structure

Operations:
read_next () – reads the next portion of the file and
automatically advances a file pointer.
write_next () – append to the end of the file and
advances to the end of the newly written material
(the new end of file).
reset – back to the beginning of the file.

Sequential Access (based on tape model)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

File is made up of fixed-length logical records that allow
programs to read and write records rapidly in no particular
order.
File is viewed as a numbered sequence of blocks or records.
For example, can read block 14, then read block 53, and
then write block 7.
Operations:

read(n) – reads relative block number n.
write(n) – writes relative block number n.

Relative block numbers (to the beginning of the file) allow
OS to decide where file should be placed

Direct Access (based on disk model)

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Access Methods

Can be built on top of the direct-access methods
Generally -- involve creation of an index for the file, containing
pointers to the various blocks.
Keep index in memory for fast determination of location of data
to be operated on
For example, a retail-price file might list the universal product
codes (UPCs) for items, with the associated prices: 10-digit
UPC + 6-digit price = a 16-byte record. If the disk has 1,024
bytes per block, we can store 64 records per block. A file of
120,000 records would occupy about 2,000 blocks (2 million
bytes). By keeping the file sorted by UPC, we can define an
index consisting of the first UPC in each block. This index
would have 2,000 entries of 10 digits each, or 20,000 bytes,
and thus could be kept in memory.
If too large, keep index (in memory) of the main index (on disk)

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Typical File System Organization

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Structure
The directory can be viewed as a symbol table that translates file
names into their directory
A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Directory entry

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Organization

Efficiency – locating a file quickly
Naming – convenient to users

Two users can have same name for different files
The same file can have several different names

Grouping – logical grouping of files by properties (e.g.,
all Java programs, all games, …)

The directory is organized logically to obtain

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single-Level Directory

A single directory for all users

Naming problem: unique name rule is violated
Grouping problem

9.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-Level Directory

Separate directory for each user

Can have the same file name for different user
Efficient searching
User isolation: difficult for file sharing
No grouping capability

9.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories

9.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories

Have shared subdirectories and files

9.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory

	final-review-1
	final-review-2
	final-review-3

