Programming Assignments
Information Session

Tao Gong



Pthread library

* Thread:

* pthread create, pthread_join, pthread_exit;
* Mutex

e pthread _mutex_lock; pthread _mutex_unlock;
* CV

* pthread _cond_wait; pthread _cond_signal; pthread cond_broadcast;



Programming Assignment 2: part 1

e Mutual exclusive accessing CurrentID
* Create 1 mutex
* Lock & unlock, create a critical section
* In CS, check CurrentID and proceed
* Create 6 threads and pass parameters (thread ids)

* Takeaway:
* Thread creation; Critical section
* Feel the inefficiency caused by starvation



Programming Assignment 2: part 2

* Mutual exclusive accessing queue, signaling to avoid starvation
* Create 1 mutex
* Lock & unlock, create a critical section (to access a queue element)

* Check queue element. Give up lock and wait if cannot proceed
(pthread _cond_wait, full for producer and empty for consumer)

* Produce or consume. Notify waiting threads if they can proceed now
(pthread_cond_broadcast, produced consumed the first element)

e Create 2+3 threads

* Takeaway:
e Thread signaling
 Starvation avoidances
* (OPT) Threads cancellation techniques



Programming Assignment 3: 0s161 kernel

* Part A: warming up
 Part B, C, D: create 3 system calls and their implementation (in kernel)
* Part E, F: create user applications to test created system calls

e exit() <- astubin place
e printint()

* reversestring()

 Later two need return values



How "reboot" syscall is called

* reboot() is declared in include/unistd.h
* reboot() is called by userapps, (so they must include unistd)

* reboot() is defined by a macro SYSCALL according to the callno.h by the script:

* callno-parse.sh file loads callno.h, read the segment between /*CALLBEGIN*/ /*CALLEND*/
remove the leading SYS _

e SYSCALL macro (syscalls-mips.S ) creates functions and actually point to
__syscall(SYS_callname)

* e.g.: #define SYS_reboot 8

* callno-parse.sh and SYSCALL macro WILL create reboot() and is actually calling
__syscall(SYS_reboot,)

* This process is automated by make (or make depends | can't remember exactly)
* (soyou only need to define it in the callno.h segment with leading SYS )

e 05161 captured _ syscall and now you are at mips_syscall()
(arch/mips/mips/syscall.c), kernel context

* the switch-case statement routes the execution to sys_reboot(), also passes
parameters

* sys_reboot() is declared in kern/include/syscall.h
* sys_reboot() is defined in kern/main/main.c
* kern/main/main.c is included in the kernel by kern/conf/conf.kern



Demo: creating system calls: printstring

System call function
e kern/include/kern/callno.h

* System call “printstring” is automatically created:
* printstring() declare and defined in userspace (stub)
* SYS_printsting macro in kernel space

Kernel space (implementation)
* kern/arch/mips/mips/syscall.c
* Switch cases
* If create other Cfile, include in kern.conf

User application (test application)
* testbin/ copy a sample
* Modify .c, Makefile, depend.mk
* Modify ../Makefile

Improvement
e Parameter passing, return values, separate file.



Compile and execute

* Kernel config
* at kern/conf: ./config ASSTO

e Kernel code
» at compile/ASSTO: make depend; make; make install

 User code
* make

* Execute OS
* sys161 kernel-ASSTO



Q&A



printf & kprintf ?

* printf:
* User space API
 Standard C I/O library

* Format the output and use system call to display it
* Remember, kernel has your "screen”, user application does not have direct control
* The implementation is provided by kernel

* kprintf:
e Kernel space API
* Not a standard, but a common API

* Same formatting, but directly display it at kernel
* Where to display? It depends. It may be the screen, or kernel messaging buffer

* In 05161, the display systemcall is not implemented, if you use printf, you
will see “unknown system call number”



User space functions & kernel space functions

e Can | call user space functions from kernel space?
* E.g., printint() and sys_printint() at kernel

* TLDR: You only call kernel space function at kernel side



How to modify Makefiles and depend.mk

e testbin/testprintstring/Makefile and depend.mk
* Change every “add” to “testprintstring”

* testbin/Makefile
* Copy the “add” line and modify “add” to “testprintstring”



Location of the files

* kern/include/kern/callno.h
* kern/arch/mips/mips/syscall.c
e testbin/testprintstring/*



