CSE4300 Homework 3 (Due on May 7th, 2019)

- **Q1.** In a memory system, what is **fragmentation**? Discuss the difference between external fragmentation and internal fragmentation. **(5 points)**
- **Q2.** Consider a paging hardware with TLB. Assume that the TLB has a hit ratio of 0.75. Searching TLB takes 30 ns and searching memory takes 200 ns in average. **(15 points)**
 - a. What is the average cost to translate a virtual address to physical address?
 - b. What is the cost if no TLB is used?
- **Q3.** Consider virtual addressing of 32 bits. Assume that the page size is 8 KB. You have 16 GB of RAM. **(25 points)**
 - a. How many entries do you need in the page table?
 - b. How many bits are needed to index the page table?
 - c. Assume that Table 1 lists all the virtual pages of process A that are currently in physical memory. If a virtual page is not listed in Table 1, it implies that any address in that range will result a page fault and will be a miss. **Translate** the following virtual addresses to physical address using the table below (if possible), and **mention** which will be hit and which will cause a miss: 13549, 45862, 38267, 144.

Virtual Page	Physical Page
1	4
5	7
3	12
0	9

Q4. Considering the following reference string:

3, 5, 0, 3, 0, 4, 3, 5, 1, 2, 4, 0, 3, 0, 2

for a memory with three frames, **illustrate** the following page-replacement algorithms and calculate **the number of page faults**. **(40 points)**

- a. FIFO
- b. OPT
- c. LRU
- d. Second-chance algorithm

Q5. What is Bélády's Anomaly and what property helps LRU avoid the anomaly? (5 points)

Q6. What is the cause of thrashing? How does the system detect thrashing? Once it detects thrashing, what can the system do to eliminate this problem? **(10 points)**