

Installation Guide for OS/161

Step 1: You will need the following source files. Please make sure that you already downloaded them.

 os161.tar.gz
 os161-binutils.tar.gz
 os161-gcc.tar.gz
 os161-gdb.tar.gz
 sys161.tar.gz

Step 2: Build and Install the Binary Utilities (Binutils)

Unpack the binutils archive by executing the following command inside your Download folder:
tar -xzf os161-binutils.tar.gz

Next, In binutils-2.17+os161-2.0.1/configure

Change

| egrep 'texinfo[^0-9]*([1-3][0-9]|4\.[4-9]|[5-9])' >/dev/null 2>&1; then

to

| egrep 'texinfo[^0-9]*([1-3][0-9]|4\.([4-9]|[1-9][0-9])|[5-9])' >/dev/null 2>&1; then

Please note the change is made only in the part that is underlined.

Next, move into the newly-created directory:
cd binutils-2.17+os161-2.0.1

Configure binutils by executing the following command(Please note that the following needs to be typed in
a single line)

./configure --nfp --disable-werror --target=mips-harvard-os161 --prefix=$HOME/sys161/tools

Run the following command:
find . -name '*.info' | xargs touch

Make binutils by executing the following command:
make

Finally, once make has succeeded, install the binutils into their final location:
make install

This will create the directory $HOME/sys161/tools/ and populate it.

Step 3: Adjust Your Shell's Command Path

First, make the directory in which your shell will eventually find the toolchain binaries:

mkdir $HOME/sys161/bin

Next, add two directories ($HOME/sys161/bin and $HOME/sys161/tools/bin) to your shell's search path.

export PATH=$HOME/sys161/bin:$HOME/sys161/tools/bin:$PATH

Note that setting these variables only works in the shell or window where you execute the above commands. You will need to re-

execute these command if you reboot Ubuntu or open a new shell to ensure that the proper path is set and used for future logins

and for other newly created shells.

Note that you may need to log out and log back in again so that this PATH change will take effect. You can check the current setting of

the PATH environment variable using the command

printenv PATH

Step 4: Install the GCC MIPS Cross-Compiler

Unpack the gcc archive by executing the following command inside your Download folder:

tar -xzf os161-gcc.tar.gz

In gcc-4.1.2+os161-2.0/configure,

Change

 | egrep 'texinfo[^0-9]*([1-3][0-9]|4\.[2-9]|[5-9])' >/dev/null 2>&1; then

to

| egrep 'texinfo[^0-9]*([1-3][0-9]|4\.([2-9]|[1-9][0-9])|[5-9])' >/dev/null 2>&1; then

Please note the change is made only in the part that is underlined.

Move into the newly-created directory:

cd gcc-4.1.2+os161-2.0

Configure gcc by executing the following command (Please note that the following needs to be typed ins a single line)

Please note that “mips-harvard-os161” in the following command needs to be typed as a single word.

./configure -nfp --disable-shared --disable-threads --disable-libmudflap --disable-libssp --target=mips-

harvard-os161 --prefix=$HOME/sys161/tools

Make it and install it:

make

make install

Step 5: Install GDB

Unpack the gdb archive by executing the following command inside your Download folder:

tar -xzf os161-gdb.tar.gz

In gdb-6.6+os161-2.0/configure

Change

| egrep 'texinfo[^0-9]*([1-3][0-9]|4\.[4-9]|[5-9])' >/dev/null 2>&1; then

to

| egrep 'texinfo[^0-9]*([1-3][0-9]|4\.([4-9]|[1-9][0-9])|[5-9])' >/dev/null 2>&1; then

Please note the change is made only in the part that is underlined.

Move into the newly-created directory:

cd gdb-6.6+os161-2.0

Configure gcc

./configure --target=mips-harvard-os161 --prefix=$HOME/sys161/tools --disable-werror

make

make install

Step 6: Build and Install the sys161 Simulator

Unpack the sys161 archive by executing the following command inside your Download folder:

tar -xzf sys161.tar.gz

Move into the newly-created directory:

cd sys161-1.99.05

Next, configure sys161:

./configure --prefix=$HOME/sys161 mipseb

Build sys161 and install it:

make

make install

Step 7: Set Up Links for Toolchain Binaries

cd $HOME/sys161/tools/bin

The following needs to be typed as a single line. Please note that “-f4-“ needs to be

typed as a single word. Also, note that ' and ` are different characters in the following

command.

sh -c 'for i in mips-*; do ln -s ../tools/bin/$i ~/sys161/bin/cs4300-`echo $i | cut -d- -

f4-`; done'

cd $HOME/sys161

ln -s share/examples/sys161/sys161.conf.sample sys161.conf

When you are finished with these steps, a listing of the directory $HOME/sys161/bin should look similar to this:

cs4300-addr2line@ cs4300-gcc-4.1.2@ cs4300-nm@ cs4300-size@ stat161-1.99.05*

cs4300-ar@ cs4300-gccbug@ cs4300-objcopy@ cs4300-strings@ sys161@

cs4300-as@ cs4300-gcov@ cs4300-objdump@ cs4300-strip@ sys161-1.99.05*

cs4300-c++filt@ cs4300-gdb@ cs4300-ranlib@ hub161@ trace161@

cs4300-cpp@ cs4300-gdbtui@ cs4300-readelf@ hub161-1.99.05* trace161-1.99.05*

cs4300-gcc@ cs4300-ld@ cs4300-run@ stat161@

These are all of the tools you will need to work with sys161.

Step 8: Install OS/161

First, create a directory to hold the OS/161 source code, your compiled OS/161 kernels, and related test programs.

cd $HOME

mkdir cs4300-os161

Next, move the OS/161 archive into your new directory and unpack it:

mv os161.tar.gz cs4300-os161

cd cs4300-os161

tar -xzf os161.tar.gz

This will create a directory called os161-1.11 (under cs4300-os161) containing the OS/161 source code.

Configure and Build OS/161

Step 1: Configure and Build OS/161

The next step is to configure OS/161 and compile the kernel. From the cs4300-os161 directory, do the following:

cd os161-1.11

./configure --ostree=$HOME/cs4300-os161/root --toolprefix=cs4300-

cd kern/conf

./config ASST0

cd ../compile/ASST0

make depend

make

make install

The string ASST0 in the commands above indicates that you are working on assignment 0. For Assignment X, replace ASST0 with

ASSTX in the commands above. The make install command will create a directory called $HOME/cs4300-os161/root

($HOME refers to your home directory), into which it will place the compiled kernel in a file called kernel-ASST0. It will also

create a symbolic link call kernel referring to kernel-ASST0. Check the $HOME/cs4300-os161/root directory to make

sure that your kernel is in place.

Next, build the OS/161 user level utilities and test programs:

cd $HOME/cs4300-os161/os161-1.11

make

Step 2: Try Running OS/161

You should now be able to use the SYS/161 simulator to run the OS/161 kernel that you built and installed. The SYS/161 simulator

requires a configuration file in order to run. To obtain one, do this:

cd $HOME/cs4300-os161/root

cp $HOME/sys161/sys161.conf . (Please note the “.” at the end of the command which is

required)

Now run your compiled kernel on the simulator. Assuming that you're still in the $HOME/cs4300-os161/root directory, do this:

sys161 kernel-ASST0

You should see some output that looks something like this:

sys161: System/161 release 1.99.05, compiled Apr 28 2011 21:49:59

OS/161 base system version 1.11

Copyright (c) 2000, 2001, 2002, 2003

 President and Fellows of Harvard College. All rights reserved.

Put-your-group-name-here's system version 0 (ASST0 #1)

Cpu is MIPS r2000/r3000

336k physical memory available

Device probe...

lamebus0 (system main bus)

emu0 at lamebus0

ltrace0 at lamebus0

ltimer0 at lamebus0

hardclock on ltimer0 (100 hz)

beep0 at ltimer0

rtclock0 at ltimer0

lrandom0 at lamebus0

random0 at lrandom0

lhd0 at lamebus0

lhd1 at lamebus0

lser0 at lamebus0

con0 at lser0

pseudorand0 (virtual)

OS/161 kernel [? for menu]:

The last line is a command prompt from the OS/161 kernel. For now, just enter the command q to shut down the simulation and return

to your shell.

